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1.1 Importance of forest inventory 
Forest inventory deals with the methods of obtaining detailed and accurate 
information about forest composition and structure (Spurr, 1951). Forest 
structure is described by various attributes associated with spatiotemporal 
properties of forest stands, such as height, diameter at breast height (DBH), 
canopy closure and volume (Latifi et al., 2015). These forest inventory are 
an important source of information for a variety of strategic and tactical 
forest management purposes, including silviculture (Pond et al., 2014), 
ecological restoration (Benayas et al., 2009), wildland fire risk assessment 
(Morsdorf et al., 2004; Pierce et al., 2009), biomass estimation and carbon 
stock management (Brown, 2002; Nelson et al., 1988; Patenaude et al., 
2005), as well as assessment of biodiversity and habitat (Martinuzzi et al., 
2009; Turner et al., 2003). Remote sensing techniques have become an 
integral part of forest inventory to provide accurate and timely forest and 
tree characteristics at different scales to support this variety of forest 
management purposes (Latifi, 2012; White et al., 2016; Zhang et al., 
2014). 

1.2 LiDAR remote sensing technology of forest 
inventory 

Among remote sensing techniques, small-footprint airborne laser scanning 
(ASL), also known as airborne LiDAR (Light Detection And Ranging), 
has rapidly gained popularity in forest inventory, due to its unique 
capability to measure the 3D structural information of trees directly 
(Hyyppä et al., 2008; Lim et al., 2003b; White et al., 2016).  

The two main strategies for using LiDAR data in forest inventories are the 
area-based approach (ABA) and individual tree detection (ITD) (Hyyppä 
et al., 2012). ABAs rely on statistical principles and predict forest 
attributes based on parametric regression or nonparametric imputation 
models built between using field measured variables and features derived 
from LiDAR data (Kathuria et al., 2016; Næsset, 2002). For instance, in 
ABAs statistical features, such as percentiles of laser canopy height 
distribution, are used as predictors in a model-based framework to estimate 
forest height characteristics in a certain sampling area (e.g., raster grid cell 
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or segment) (Nelson et al., 1988; Vastaranta et al., 2011). ABAs can 
perform well under low LiDAR point densities and are currently applied 
in operational forest inventory to provide a wall-to-wall estimation of 
forest attributes at stand-level (Zhang et al., 2014). In ITD approaches, an 
initial take is to detect the trees. Then, the ITDs measure or predict tree-
level variables, such as height and volume, from LiDAR data and 
aggregate them to obtain stand-level forest inventory results (Vastaranta et 
al., 2011). ITD approaches have an advantage over ABAs regarding 
improving the prediction of species-specific forest attributes (Yao et al., 
2012) and the prediction of timber assortments (Kathuria et al., 2016; 
Vastaranta et al., 2011; Zhang et al., 2014). Another advantage of ITCs is 
that they can reduce the amount of or potentially even replace the 
expensive fieldwork required for ABAs (Hyyppä et al., 2008; Vastaranta 
et al., 2012). Therefore, ITD approaches have attracted more attention in 
the LiDAR research community than ABA approaches (Duncanson et al., 
2014; Hyyppä et al., 2012; Jing et al., 2012a; Koch et al., 2006; Li et al., 
2012; Lu et al., 2014; Mongus and Žalik, 2015; Popescu and Wynne, 2004; 
Reitberger et al., 2009b). 

1.3 LiDAR technology of individual tree detection 
The key point in ITD approaches (including treetop detection and crown 
delineation) is the detection of trees from LiDAR data. Hyyppä and 
Inkinen (1999) and Persson et al. (2002) were among the first to prove the 
potential effectiveness of airborne LiDAR systems for the recognition of 
single trees. Numerous ITD approaches have been developed in the past, 
such as Region Growing (Hyyppä et al., 2001), Watershed (Chen et al., 
2006) and Normalized Cut (Yao et al., 2012). These methods have the 
initial identification of local maxima (i.e. treetops) in common, based on 
geometric information from LiDAR data (Duncanson et al., 2014; Mongus 
and Žalik, 2015; Vastaranta et al., 2011; Véga and Durrieu, 2011; Zhang 
et al., 2014). The initial step in such a method relies on the generation of a 
Digital Surface Model (DSM) or normalized Digital Surface Model 
(nDSM), describing the geometry of the uppermost layer of the canopy 
(Hyyppä et al., 2008). ITD approaches identify the local maxima in the 
generated DSM (or nDSM) that are considered to correspond to the 
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positions of the treetops. Subsequently, the local maxima are used as 
reference points (or seed points) for crown segmentation and height 
estimation (Véga and Durrieu, 2011). Even though many successful results 
have been reported in the literature in terms of individual tree detection, 
some issues remain to be resolved. 

1.3.1 Challenges regarding Individual Tree Detection 
The main challenge faced when implementing an ITD approach is that the 
accuracy of detection can be strongly affected by the quality of the DSM 
(or nDSM) derived from the LiDAR data (Hyyppä et al., 2008). With ITD 
approaches, either the LiDAR-derived DSM, which is a raster image 
interpolated from LiDAR points depicting the uppermost layer of the 
canopy (Chen et al., 2006; Duncanson et al., 2014; Heurich, 2008; Jing et 
al., 2012a; Wu et al., 2016), or the original LiDAR raw data point clouds 
can be used (Ferraz et al., 2012; Li et al., 2012; Lu et al., 2014; Reitberger 
et al., 2009b; Yao et al., 2012). 

The major advantage of using point cloud-based methods is that all LiDAR 
returns can be used so that no information is omitted (Duncanson et al., 
2014). However, such point cloud-based ITD techniques are 
computationally demanding and limited to small areas, thus may not be 
applicable across a larger range of forest types (Duncanson et al., 2014; 
Hu et al., 2014; Mongus and Žalik, 2015; Wu et al., 2016). Irrespective of 
whether the ITD approaches are based on a raster DSM or the point cloud, 
most ITDs require a high density of laser pulse footprints (Lefsky et al., 
2002). Augmenting the density of laser pulse footprints increases the 
chance of the laser sampling the “true” treetop (Chen et al., 2006).  

Typically, a high-resolution DSM raster has been generated by 
interpolating all first returns of LiDAR, often by Delaunay triangulating 
their x-y coordinates into a Triangulated Irregular Network (TIN) 
(Axelsson, 1999; Khosravipour et al., 2015; Van Leeuwen et al., 2010; Wu 
et al., 2016). Nevertheless, any 2D interpolation of first returns will 
struggle to produce a realistic representation of the canopy surface when 
there are first returns that have very similar x-y coordinates but very 
different z values (Axelsson, 1999). When triangulated into a TIN, such 
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variations will form needle-shaped triangles that appear as spikes and 
result in pixels with unnaturally low values called data pits – or simply 
pits – when the TIN is rasterized (Khosravipour et al., 2016). Intuitively, 
pits or spikes form and appear whenever the laser beam penetrates deeply 
into a tree crown, hitting a lower branch or the ground instead of uppermost 
vegetation layer before producing a first return. These geometric 
irregularities often turn the corresponding DSM rasters into extremely 
jagged surfaces, which subsequently reduce the accuracy of tree detection 
by increasing the omission (undetected tree) and commission (falsely 
detected) errors. For example, Persson et al. (2002) stated that data pits 
create difficulties for recognizing separate tree crowns, while Gaveau and 
Hill (2003) claimed that data pits cause canopy height underestimation 
(especially of small trees), due to the omission of treetops. Alternative 
suggestions have been to generate a canopy surface regular grid, recording 
either the maximum laser elevation value (Chen et al., 2006) or the last 
LiDAR return (Hyyppä et al., 2012) for each cell. However, both these 
options struggle to produce a reliable high-resolution representation of the 
canopy surface. 

In order to improve the accuracy of tree detection, a number of studies 
have recommended applying image smoothing methods (e.g., Gaussian 
filter) by removing data pits or/and irrelevant local maxima (Brandtberg et 
al., 2003; Persson et al., 2002; Yu et al., 2011). However, all pixels of a 
DSM are altered when smoothing their values with respect to their nearest 
neighbors. Subsequently, smoothed DSMs often underestimate the true 
tree height due to the omission of treetops, especially with small and 
suppressed trees (Eysn et al., 2015; Hyyppä et al., 2000; Solberg et al., 
2006). 

A number of studies indicate that various forest conditions (e.g., crown 
size, age, tree species, forest density, site type and steep terrain) can also 
significantly influence the quality of DSMs and thereby the performance 
of ITD approaches (Falkowski et al., 2008; Pitkänen et al., 2004; Popescu 
and Wynne, 2004; Vauhkonen et al., 2012a; Yu et al., 2011). For example, 
complex forest terrain presents a challenging problem whenever a height-
normalized DSM – also known as Canopy Height Model (CHM) – is 
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produced for tree detection. A CHM, is typically created by subtracting the 
Digital Terrain Model (DTM) from the DSM (Lim et al., 2003b). The 
CHM represents absolute canopy height above the bare-earth terrain 
surface. However, complex forest terrain affects the performance of the 
height normalization step by distorting the CHM, thus possibly reducing 
the accuracy of tree detection (Vega et al., 2014). On steep slopes, the raw 
elevation values located, for example, on either the downhill or the uphill 
part of a tree crown are height-normalized with parts of the DTM that may 
be much lower or higher than the tree stem base, respectively (Breidenbach 
et al., 2008). Therefore, in the CHM, the downhill part of the crown will 
“rise” while the uphill part will “sink”, causing the entire tree crown to be 
systematically distorted. In tree detection, a “rising” branch overhanging 
lower terrain in the downhill part can turn into a “false” local maximum at 
some distance from the true treetop. Considering the location of such a 
“false” local maximum as the actual treetop negatively effects subsequent 
crown delineation and height estimation. 

1.4 General research objectives 
The aim of this study is to develop a new approach to generate a high-
quality LiDAR-derived DSM that improves the accuracy of individual tree 
detection. The specific objectives of this study are as follows. 

(1) To develop a new “pit-free” algorithm that is able to remove pits 
efficiently and generate a pit-free CHM (nDSM) raster (after 
elevations have been normalized) 

(2) To quantify the effect of the slope gradient on the accuracy of treetop 
detection when using a pit-free LiDAR-derived CHM. 

(3) To develop a novel “spike-free” algorithm that generates a DSM with 
the highest possible resolution using all relevant LiDAR returns 
(without needing to normalize the elevations).  

(4) To assess the accuracy of treetop detection using a DSM generated 
with the spike-free algorithm for different types of forests and LiDAR 
point densities. 
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1.5 Outline 
This thesis consists of four main chapters, each aiming to fulfill part of the 
objective of this study: to improve the accuracy of tree detection using 
airborne LiDAR data. 

Chapter 1 is a general introduction to the study.  Chapter 2 aims to present 
a new “pit-free” algorithm able to create a pit-free CHM raster by using 
subsets of LiDAR points to close pits. In order to demonstrate the 
robustness of the algorithm for generating a CHM, the algorithm has been 
applied to both a high- and low- LiDAR point density datasets. The pit-
free CHMs derived from LiDAR datasets were evaluated by assessing and 
comparing the accuracy of individual treetop detection using smoothed 
first-return CHMs. 

Chapter 3 aims to theoretically and experimentally quantify the effect of 
slope on the accuracy of treetop detection when using a pit-free LiDAR-
derived CHM. First, we present a simplified theoretical model to illustrate 
how the normalization causes a systematic error in CHM-based treetop 
detection when an individual tree is located on sloping terrain. Then, we 
assess the accuracy of treetop detection by using both the CHM/nDSM 
(i.e. with the normalized elevations) and the DSM (i.e. with original 
elevations). Finally, we compute the positional difference between the 
same treetop detected in both the CHM and the DSM, in order to 
investigate the influence of the slope on the horizontal displacement of 
CHM-detected trees as well as its effect on subsequent height estimation. 

Chapter 4 endeavors to present a novel “spike-free” algorithm that can 
generate a spike-free DSM at the highest resolution supported by the 
LiDAR. The algorithm considers all relevant LiDAR returns (instead of 
only first returns) and systematically prevents the formation of spikes 
during the TIN construction. This new algorithm is evaluated by 
comparing the results of treetop detection using the generated spike-free 
DSM with those achieved using a common first-return DSM. 

In Chapter 5 the accuracy is assessed of treetop detection using a DSM 
generated with the spike-free algorithm for different types of forest (a 
temperate plantation, a temperate mixed deciduous-coniferous forest and 
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a tropical rainforest) at different LiDAR point densities (low, moderate and 
high). We also evaluate the accuracy of treetop detection using a DSM 
generated with the spike-free algorithm compared to the accuracy using 
DSMs generated by interpolating first-return, highest-return, and last-
return LiDAR points. 

The thesis concludes with Chapter 6, describing the interrelationship 
between all chapters and posing suggestions for future research. 
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Chapter 2  
 
Generating pit-free canopy height models 
from airborne LiDAR* 

  

                                          
* This chapter is based on: 
Khosravipour, A., Skidmore, A.K., Isenburg, M., Wang, T., Hussin, Y.A., 2014. 
Generating Pit-free Canopy Height Models from Airborne Lidar. Photogrammetric 
Engineering & Remote Sensing, 80, 863-872 
 
Khosravipour, A., Skidmore, A.K., Isenburg, M., Wang, T., Hussin, Y.A., 2014. 
Development of an algorithm to generate a Lidar pit - free canopy height model. In: Proc. 
Silvilaser2013 : 13th International conference on Lidar applications for assessing forest 
ecosystems, Beijing, pp. 125-128. 
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Abstract 

Canopy height models (CHMs) derived from LiDAR data have been 
applied to extract forest inventory parameters. However, variations in 
modeled height cause data pits, which form a challenging problem as they 
disrupt CHM smoothness, negatively affecting tree detection and 
subsequent biophysical measurements. These pits appear where laser 
beams penetrate deeply into a tree crown, hitting a lower branch or the 
ground before producing the first return. In this study, we develop a new 
algorithm that generates a pit-free CHM raster, by using subsets of the 
LiDAR points to close pits. The algorithm operates robustly on high-
density LiDAR data as well as on a thinned LiDAR dataset. The evaluation 
involves detecting individual trees using the pit-free CHM and comparing 
the findings to those achieved by using a Gaussian smoothed CHM. The 
results show that our pit-free CHMs derived from high- and low-density 
LiDAR data significantly improve the accuracy of tree detection. 
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2.1 Introduction 
The use of airborne Light Detection and Ranging (LiDAR) has been 
increasing in forestry. LiDAR is capable of providing accurate three-
dimensional information on forest structure (Lim et al., 2003a), 
contributing significantly to the improved accuracy of forest inventories 
(Magnussen et al., 2010; Yu et al., 2011) and subsequent biophysical 
parameters such as biomass (Nelson et al., 1988; Popescu, 2007). 

Typically, a LiDAR-derived Canopy Height Model (CHM) or a 
normalized Digital Surface Model (nDSM) is used for extracting relevant 
forest inventory information, such as detecting single trees for subsequent 
height estimation and crown delineation (Bortolot and Wynne, 2005; 
Forzieri et al., 2009). The CHM represents absolute canopy height above 
ground and it is typically calculated by interpolating the first return LiDAR 
points and determining their height above a digital terrain model. (Hyyppä 
et al., 2008; Van Leeuwen et al., 2010). Tree height measurement and 
crown delineation mainly rely on the identification of local maxima, with 
each local maximum corresponding to the location of an individual treetop 
and the surrounding segments forming the tree crown (Véga and Durrieu, 
2011). Therefore, to be able to extract relevant structural parameters of 
trees (e.g. tree height) the correct location of single trees in the CHM is of 
fundamental importance (Chen et al., 2006; Persson et al., 2002; Yao et 
al., 2012). While some researchers have tried to find local maxima directly 
in the LiDAR points (Li et al., 2012), most operational users of LiDAR 
first calculate a raster CHM from the first return LiDAR points and then 
extract local maxima from that raster CHM (Hyyppä et al., 2008; Lim et 
al., 2003b). 

The main challenges faced in treetop detection are commission errors 
(falsely detected trees) and omission errors (undetected trees) (Hosoi et al., 
2012; Pouliot et al., 2005). These errors are mainly attributed to natural 
variation in tree crown size (Pitkänen et al., 2004) as well as to height 
irregularities within individual tree crowns in the input CHM (Solberg et 
al., 2006). To address natural variation in crown size, researchers have 
developed processing methods that adapt to the crown (object) size. 
Pitkänen et al. (2004) developed and tested three different adaptive 
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methods for individual tree detection based on canopy differences. Wulder 
et al. (2000) proposed the use of a local maxima filter with variable 
window sizes. However, if the selected window size is smaller or larger 
than the crown size, then the commission or omission error, respectively, 
will increase. In order to select the correct window size, Popescu and 
Wynne (2004) introduced an adaptively varying window technique, based 
on the idea that a moving local maxima filter should be adjustable to an 
appropriate width to account for different crown sizes.  

To address irregularities in crown height, a number of researchers have 
suggested pre-processing CHMs to reduce commission and omission 
errors (Bortolot and Wynne, 2005; Brandtberg et al., 2003; Chen et al., 
2006; Solberg et al., 2006). 

Irregularities in canopy surface elevation, also called “data pits”, form a 
challenging problem due to their disruptive influence on a CHM, reducing 
accuracy in tree detection and subsequent biophysical measurements (Ben-
Arie et al., 2009; Gaveau and Hill, 2003; Zhao et al., 2009). For example, 
Shamsoddini et al. (2013) indicated that data pits may significantly affect 
the estimation of structural forest parameters, especially basal area and 
stand volume. Since the processing of raw LiDAR point clouds into a 
meaningful raster is a composition of many different procedures, there is 
no unified agreement on the cause of data pits. Axelsson (1999) found that 
some information from raw point clouds with similar xy-coordinates and 
different z values is lost when the points are interpolated into a raster. Such 
lost data become significant when multiple echoes are registered in a 
forested area. Ben-Arie et al. (2009) and Véga and Durrieu (2011) stated 
that the problem of data pits was due to laser scanning processing and/or 
post-processing of LiDAR point clouds. Data pits may also occur during 
classification of LiDAR point clouds into ground and non-ground points 
when creating a Digital Surface Model (DSM) or a Digital Terrain Model 
(DTM),  depending on classification technique and LiDAR point density 
(Kraus and Pfeifer, 1998). Leckie et al. (2003) called such data pits “holes” 
and found them to be caused by merging different LiDAR flight lines and 
by laser beams penetrating through canopy branches and foliage to the 
ground below. Persson et al. (2002) stated that LiDAR penetration caused 
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“large height variations” within single tree crowns, creating difficulty in 
recognizing separate crowns. Gaveau and Hill (2003) reported the 
penetration of laser beams into a tree crown to be the cause of canopy 
height underestimation. Zhao et al. (2013) described data pits as “invalid 
values” or “abnormal elevation changes”, which formed unnatural gray or 
black holes in CHM images. Many studies have claimed that LiDAR-
derived tree parameters (e.g. height and crown diameter) may be 
misinterpreted due to the pits present in the CHM image (Gaveau and Hill, 
2003; Persson et al., 2002). 

A number of studies have recommended image smoothing, using methods 
such as a mean, median or Gaussian filter to reduce the data pits 
(Brandtberg et al., 2003; Hosoi et al., 2012; Persson et al., 2002; Yu et al., 
2011). Typically, image smoothing consists of a two-dimensional (2D) 
isotropic kernel function, as widely used on 2D remote sensing images 
(Dralle and Rudemo, 1996) in order to remove “impulse noise” including 
salt-and-pepper noise and random-valued noise (Chan et al., 2005). 
However, the use of this technique is not appropriate when processing 
CHMs derived from highly accurate three-dimensional (3D) LiDAR data, 
because all pixels are altered when smoothing their values according to 
their nearest neighbors (Ben-Arie et al., 2009; Zhao et al., 2013). 
Smoothing methods have underestimated true tree height (especially of 
small trees) (Hyyppä et al., 2000), due to the omission of treetops, as well 
as underestimated crown radius, due to the reduction of crown shoulders 
(Solberg et al., 2006). Consequently, such errors reduce the accuracy of 
forest biomass and carbon estimations.  

Other researchers have proposed different methods for removing data pits. 
Leckie et al. (2003) and Popescu and Wynne (2004) recommended that 
only the highest first return in each cell (pixel) be used, instead of using 
all first LiDAR returns that penetrate the crown. Chen et al. (2006) 
suggested using a large cell size to minimize height variation within 
crowns. However, large cell sizes (e.g. > 0.5 m) reduce the potential 
accuracy of the crown boundary. Ben-Arie et al. (2009) introduced a semi-
automated pit-filling algorithm to fill the data pits. In this algorithm, a 
Laplacian filter is applied to the original CHM to find pits with a user-
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defined threshold (visual decision). Evaluation of different threshold 
ranges indicated that choosing an incorrect threshold would cause an 
omission (under-filling) or commission error (over-filling). Zhao et al. 
(2013) improved the method proposed by Ben-Arie et al. (2009) by adding 
a morphological crown control threshold in order to minimize the 
overfilling problem. They assumed the crown shape of both coniferous and 
deciduous forest trees to be near circular. However, the algorithm could 
not remove all pits, especially not when a lower branch or leaf inside the 
canopy was encountered, rather than the ground. Shamsoddini et al. (2013) 
developed an adaptive mean filter method using variable window sizes in 
order to fill the pits. However, it is difficult to select an optimal window 
size that results in high accuracy for all tree structural parameters.  

Due to advances in LiDAR technology, survey data with very high point 
densities (i.e. ~50 point/m2 or more) have become available. Researchers 
have found that such high-resolution point clouds allow them to extract 
detailed data on forest structure (Holmgren et al., 2008; Hyyppä et al., 
2001; Li et al., 2013). However, as it is very costly to obtain such high-
density LiDAR data for large forested areas, the data sets used in practice 
often are of much lower density (e.g. 4 point/m2 or less). Although less 
accurate, these low density data are used at canopy, as well as at individual 
tree level (Ke et al., 2010; Popescu, 2007; Yu et al., 2011). It is, therefore, 
useful to develop a pit removal algorithm that generates accurate CHMs 
without data pits for both high and low LiDAR point densities. 

In this study, we present a new “pit-free” algorithm able to create a pit-free 
CHM raster. The specific objectives of this study are (1) to evaluate the 
applicability of the algorithm at different LiDAR point densities; (2) to 
evaluate pit-free CHMs by visual comparison with smoothed CHMs 
derived with a standard Gaussian smoothing technique (Dralle and 
Rudemo, 1996); and (3) to assess and compare the accuracy of individual 
tree detection using both the smoothed and the pit-free CHMs. To our 
knowledge, this is the first study that rigorously investigates how the 
removal of data pits from CHMs affects treetop detection. 
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2.2 Materials 

2.2.1 Study area 
The Bois Noir (black wood) forest forms part of the Barcelonnette basin, 
which is located in the southern French Alps (44° 23′ N, 6° 45′ E). The 
Barcelonnette basin is characterized by the Mediterranean climatic and 
geomorphological conditions observed in the southern French Alps 
(Flageollet et al., 1999). The size of the study area is about 1.3 km2 and 
mainly covered by coniferous plantation forests and grasslands, all within 
an elevation range of 1400 to 2380 m above sea level. The forest 
predominantly consists of mountain pine (Pinus uncinata) and scots pine 
(Pinus sylvestris) plus a few Larix decidua and occasional deciduous trees 
(Populus tremula and Fraxinus excelsior). 

2.2.2 Field measurements 
Field inventory data were collected during two weeks in both September 
2011 (seven plots) and September 2012 (48 plots). Stratified random 
sampling determined the position of the circular plots (r = 12.6 m), using 
a vegetation type map obtained from the French forest service (Office 
national des forêts, 2000). The vegetation map was superimposed on an 
aerial ortho-photograph and used in the field in order to improve visual 
interpretation. The measurements collected included tree location, tree 
height, tree crown diameter (CD), tree stem diameter at breast height 
(DBH) and tree species determination (Table 2.1). The total number of 
trees sampled was 694. 

A Nikon hand-held laser rangefinder (electronically measuring distance 
and angle) was used for tree height measurement where the treetops could 
be seen. The DBH of all trees (larger than 7cm stem diameter at 1.3m 
above ground) within a plot was measured using a 60 cm caliper. The 
average crown diameter of the trees was measured in two perpendicular 
directions, as direct measurement proved difficult (Song et al., 2010). 

In September 2011, the position of individual trees as well as the central 
point of each plot was recorded using the Leica 1200 Differential GPS 
System. A total station was used to measure tree positions where the 
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differential GPS signal was too weak due to canopy density. Setting up the 
geodetic base stations took a 24-hour period of static observation for each 
geodetic station (see Razak et al. (2011b) for more detail). Popescu (2007) 
reported that treetop positions may be determined with higher accuracy 
using a CHM image than with error-prone measurements derived from 
differential GPS in the field. Therefore, a printed CHM image (at a scale 
of 1:100) with 0.15 m pixel size was used in September 2012 to determine 
tree location where the differential GPS signal was too weak. Using the 
CHM technique for the 2012 fieldwork allowed us to survey many more 
plots in two weeks than in 2011.  
 
Table 2.1: Descriptive statistics of the tree field measurements. 

All (n= 694)  deciduous  (n= 33) Larix (n= 29) 
Pinus sylvestris 

(n=325) Pinus uncinata (n=307) 

  DBH 
(cm) 

Height 
(m) 

CD 
(m)  

 DBH 
(cm) 

Height 
(m) 

CD 
(m) 

DBH 
(cm) 

Height 
(m) 

CD 
(m) 

DBH 
(cm) 

Height 
(m) 

CD 
(m) 

DBH 
(cm) 

Height 
(m) 

CD 
(m)  

Min 7 6 0.5  13 7 1.5 13 6.6 3.7 8 6 0.9 7 6 0.5 

Max 61 25 9.1  43 24 6.3 61 25 8.9 59 23 9.1 41 25 6.7 

Median 23 13.5 2.6  25 15.5 3.8 36 17.6 6 25 13 3.4 20 13.5 1.7 

Mean 24.1 13.5 3  24.8 16.8 3.6 34.9 17.8 6.2 26 12.9 3.6 20.9 13.4 1.9 

SD 8.2 3.2 1.6  9.4 6 1.3 10.5 4 1.4 8.5 3 1.4 5.4 2.4 0.9 

2.2.3 LiDAR data 
The LiDAR data and aerial photographs (0.15 m pixel size) were 
simultaneously acquired during the leaf-on season in July 2009 using a 
helicopter flying about 300 m above ground level (Table 2.2). A full-
waveform airborne laser scanning system (RIEGL VQ-480), which was 
developed for surveying mountainous forested areas, was utilized by 
Helimap (Vallet and Skaloud, 2004). The system provides high-speed data 
acquisition using a fast line scanning mechanism and a narrow infrared 
laser beam. Moreover, the system performs on-line full waveform analysis 
(in hardware) to extract discrete returns from the waveforms. For our data 
set, the VQ-480 system used a laser pulse repetition rate of up to 300 kHz 
and recorded up to five returns for each pulse. The initial aim of this survey 
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was to accurately map complex landslides in forested terrain (Razak et al., 
2011b). Therefore, to increase the point cloud density, the area was 
covered by seven flights. The mean point density was 160 point/m2 with 
an average distance between laser points of 0.08 m. 

Table 2.2: The airborne laser scanning characteristics. 
Acquisition (month/year) July- 2009 

Laser scanner Riegl VQ480i 

IMU system iMAR FSAS - record 500Hz 

GPS system Topcon legacy - record 5Hz 

Laser pulse repetition rate 300 kHz 

Measurement rate Up to 150 000 s -1 

Laser wavelength Near infrared 

Beam divergence 0.3 mrad 

Laser beam footprint 75 mm at 250 m 

Field of view 60° 

Scanning method Rotating multi-facet mirror 

 
There is a time difference between the collected data by LiDAR 
acquisition in July 2009 and the field measurements in September 2011 
and 2012. However, our study area consists of mature forest and is 
characterized by relatively low temperatures during most of the year, 
which results in a relatively low tree growth rate. Therefore, we assume 
that the difference in tree height due to natural growth between the time of 
the LiDAR survey and the acquisition of ground data is negligible. 

2.3 Methods 

2.3.1 Preprocessing LiDAR data 
Our original LiDAR dataset was stored separately in adjacent irregular 
tiles and classified into ground-points and non-ground-points. To avoid 
edge effects along tile boundaries (Brandtberg et al., 2003), the LiDAR 
points were retiled with a 25 meter buffer around each tile. This essentially 
moves potential artifacts into the tile buffer. Unlike other methods that 
create a raster CHM from the difference between two rasters (i.e. by 
subtracting the DTM raster from the DSM raster), our method first height-
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normalized the raw LiDAR points and then generated a CHM raster. The 
LiDAR points were height-normalized by replacing the elevation of each 
point (i.e. the z coordinate) with its height above the ground. 
Consequently, the height of all returns classified as ground is zero. 
Afterwards, the ground returns were interpolated with a triangular 
irregular network (TIN) constructed through Delaunay triangulating 
(Isenburg et al., 2006a) the x and y coordinates in 2D. Then, the height of 
non-ground returns was computed as the vertical distance to the TIN (i.e. 
the distance in the z direction from the TIN to the points). These 
normalized LiDAR points were used as input for the pit-free algorithm, 
described in the following section. The preprocessing was implemented 
via batch-scripting the lastile and lasheight modules of LAStools 
(rapidlasso GmbH, 2013). 

2.3.2 Description of pit-free algorithm 
In this section, we describe how to efficiently generate a pit-free raster 
CHM from LiDAR point clouds. The pit-free algorithm comprises two 
stages. The first stage is to construct a standard CHM from all first returns 
and, most importantly, a number of partial CHMs from only those first 
returns that correspond to higher-up vegetation hits. The second stage is to 
combine all these CHMs into one CHM based on the highest value across 
all CHMs for each x and y raster position (Figure 2.1). This algorithm can 
easily be implemented in the command line with a batch script that uses 
an efficient combination of the las2dem and lasgrid modules of LAStools 
(rapidlasso GmbH, 2013). 

2.3.2.1 Partial CHMs 

Pits in the canopy appear whenever the laser beam is able to penetrate 
deeply through canopy branches before producing a first return. The depth 
and the distribution of pits in a standard CHM depend on the crown 
structure and the diameter of the laser beam as well as the sensitivity of 
the system processing the returning waveform (Gaveau and Hill, 2003). 
Instead of hitting the highest point of the canopy, the laser pulses may 
produce their first return when they hit a lower branch or even after they 
penetrate all the way through the crown to the ground. Hence, the depth of 
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different canopy pits varies greatly, making it impossible to use a fixed 
threshold to define (and potentially remove) them (Ben-Arie et al., 2009). 
To address this issue, a set of partial CHMs was computed by excluding 
all first returns below a certain height so that each CHM represents only 
some higher part of the canopy. The fundamental idea is to compute the 
shape of the canopy at different levels. The American Society for 
Photogrammetry and Remote Sensing (ASPRS) classifies LiDAR points 
into three layers: low vegetation (0.5 m < height ≤ 2.0 m), medium 
vegetation (2.0 m < height ≤ 5.0 m), and high vegetation (5.0 m < height) 
(ASPRS, 2008). We used a similar layering of the vegetation to construct 
our partial CHMs. All first return points were used to construct the first 
CHM (CHM00). This CHM is the standard CHM that other researchers 
have typically generated from the first return LiDAR points (Hyyppä et 
al., 2008). The second CHM (CHM02) was constructed by including first 
returns at a height of 2 and above. The first returns of ground level, low 
vegetation and medium vegetation were removed in the third CHM 
(CHM05). The fourth CHM (CHM10) and fifth CHM (CHM15) were 
constructed by excluding first returns from heights less than 10 and 15 m, 
respectively (Figure 2.1). Distance intervals of 5 m, as used in this study, 
are called height thresholds and aim to preserve the original morphological 
structure of the tree crowns. We applied CHM00 to CHM15, as only 5 % of 
the trees in the study area are taller than 20 m. 
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Figure 2.1: Diagram of pit-free algorithm methodology. 

2.3.2.2 Generating partial CHM rasters 

The partial CHMXX rasters were generated by triangulating only those first 
returns with a height (i.e. normalized z coordinate) exceeding the 
respective height thresholds and by rasterizing only those triangles where 
all three edge lengths fall within a particular cutoff point. The latter tries 
to assure that only triangles connecting first returns from the same tree 
crown are rasterized. Intuitively speaking, this rasterization threshold 
needs to be larger than the average point spacing, but smaller than the 
space that separates individual trees. We experimentally found 0.45 meter 
to be an optimal rasterization threshold for our study area and our LiDAR 
point density. Figure 2.2 illustrates the TIN generation of normalized raw 
LiDAR point clouds as well as the partial CHMXX raster created at each 
stage. Moreover, it shows that the long triangles are removed from each 
partial CHM raster by the particular threshold. 

The cell size of the raster is a key parameter when creating a CHM, 
especially for accurate derivation of individual tree attributes (Chen et al., 
2006). Pouliot et al. (2002) have suggested a ratio of crown diameter to 
grid size appropriate for defining crown shape. Based on these results, we 
determined a grid size of 0.15 m in the CHM to be sufficient for 
recognizing a minimum crown diameter of 0.50 m from our field survey. 
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Figure 2.2: The generated TINs and rasters of partial CHMs for an individual tree. 
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2.3.2.3 Composing a pit-free CHM 

In a final step, a pit-free CHM raster was created by combining the partial 
CHMXX (CHM00 to CHM15) rasters. This process can be envisaged by 
stacking the CHMXX rasters on top of each other in order of height, with 
CHM00 at the bottom and CHM15 at the top. This simple cell-based 
calculation creates a final output raster (i.e. the pit-free CHM) with the 
output value at each location being the maximum value of all input rasters, 
CHM00 to CHM15, without the need to involve any neighboring cells 
(Figure 2.3). 

 
Figure 2.3: Subset of pit-free CHM. 

2.3.3 Evaluation of the pit-free algorithm 
In order to demonstrate the robustness of our algorithm for generating a 
pit-free CHM, a lower-density version of LiDAR data was created 
artificially from the original LiDAR survey. The pit-free CHMs derived 
from both LiDAR datasets were evaluated by visually comparing them 
with the standard CHMs after applying a Gaussian smoothing filter. 

2.3.3.1 Thinning LiDAR data 

The low-density version of LiDAR data was created using a simple point 
thinning algorithm, keeping only every nth (for example, the 15th) first 
return along the time line from the original dataset. By applying the keep-
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every-nth-return filter to the first returns of each pulse, filtering takes place 
per-pulse rather than per-return. This step is important for two reasons: 
firstly, applying the filter to all returns of a high-return pulse positively 
affects the odds regarding the survival of its first return; and secondly, 
subsequent CHMXX production only utilizes the first return of each pulse. 
The algorithm was implemented in LAStools with a batch script that used 
every 15th first return from the entire point dataset and created a poor low-
density dataset with mean point density of 7 points/m2.  

We should point out that keeping every nth first return does not properly 
simulate a survey undertaken at higher altitude with a slower scan rate. 
The diameter of the laser beam on the canopy increases with the altitude 
of the aircraft’s flight path due to beam divergence of the laser (Lim et al., 
2008). In an actual survey of lower density LiDAR, fewer laser pulses 
would sample the ground, each with a wider footprint and thus more likely 
to interact with the canopy higher-up (Hall et al., 2009). However, in our 
artificially created lower density survey, the beam width remains 
unchanged and the likelihood of the thin laser beams penetrating deeply 
into the canopy remains high. This creates the desired low-density data set 
of “especially poor quality”. 

The pit-free algorithm created a pit-free CHM with a pixel size of 0.50 m, 
derived from the low-density LiDAR data. Experimenting with this 
rasterizing process, we found 1.5 m to be an optimal rasterization threshold 
for such a low-density LiDAR dataset. 

2.3.3.2 Smoothing CHM using Gaussian Filter 

The degree of smoothness of a CHM is determined by the standard 
deviation (Gaussian scale) and the window kernel size (Dralle and 
Rudemo, 1996). In all our comparisons (on CHMs with 0.15 and 0.5 m 
pixel size, based on high and low density data, respectively), a Gaussian 
filter with a 5×5 kernel was used, as the next kernel size down of 3×3 had 
no noticeable effect regarding removing data pits from the standard CHMs. 

2.3.4 Individual tree detection 
For individual tree detection we used the variable window technique, 
developed by Popescu and Wynne (2004), which automatically detects 



Generating pit-free canopy height models from airborne LiDAR 

24 

treetops. This approach uses a local maxima method with a circular 
variable window size to locate treetops with a well-defined crown in 
coniferous forests (Popescu, 2007). The variable window size of local 
maxima operates by assuming there is a relationship between tree height 
and crown size and uses these parameters to detect treetops (see Popescu 
and Wynne (2004) for more details). 

2.3.4.1 Accuracy assessment of individual tree detection 

Detection accuracy was assessed by comparing the automatically detected 
trees with the trees measured in the field. Errors of omission and 
commission were assessed by tree species and by stem diameter. For each 
tree species, the closest detected treetop within the reference crown 
boundary was considered to be a correctly detected tree. If more than one 
treetop is detected, the others are considered commission errors. Omission 
errors occur when no treetop is detected within the boundary. The overall 
accuracy of tree detection was computed by the accuracy index (AI) as 
defined by Pouliot et al. (2002): 

ሺ%ሻ	ܫܣ ൌ ൣ	ሺ݊ െ ܱ  ሻ൯/݊ሿܥ ൈ 100		 

where n is the number of reference trees in the study area, O is the omission 
error and C is the commission error. Based on the DBH distribution (Table 
2.1) the range in DBH of the trees was divided into three classes: DBH less 
than 20 cm, DBH from 20 to 40 cm, and DBH greater than 40 cm. The 
proportion of correctly detected trees was calculated as a percentage of the 
total number trees in each class. 

2.4 Results 

2.4.1 Comparing the pit-free CHMs with smoothed CHMs 
The efficacy of the pit-free algorithm was visually compared with the 
result from a 5×5 Gaussian filter. Figure 2.4 shows that the data pits – 
small dark squares – within the tree crowns, which are clearly visible in 
the standard CHM, are not present in the pit-free CHM.  
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Figure 2.4: Visual representations of the pit-free algorithm compared to the standard 
CHM and Gaussian filter for both high-density and low-density LiDAR data. 
 
The Gaussian filter also removed pits, but some pits remained compared 
to the pit-free CHM generated from the high-density dataset (Figure 2.4 
(left)). The filter over-smoothed the CHM image derived from the low-
density dataset, especially around the shoulders of tree crowns (Figure 2.4 
(right)). The algorithm is seen in Figure 2.4 to operate robustly even with 
the poor quality, thinned LiDAR data. In our experiments, the algorithm 
effectively removed the pits as well as preserved the edges of canopy gaps 
and crowns for both the high and the low-density datasets (Figure 2.4, pit-
free CHMs, left and right, respectively). 
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2.4.2 Assessing individual tree detection 
The variable window technique was applied to both the smoothed and pit-
free CHMs. Figure 2.5 shows examples of correctly detected trees, 
omission errors and commission errors for the pit-free CHM derived from 
high-density LiDAR data (white points and circles show the position of 
field trees and their crown size, respectively; gray stars indicate 
automatically detected treetops). 

 
Figure 2.5: Example of detected trees, illustrating correctly identified crowns, omission 
errors, and commission errors of the pit-free CHM derived from high-density LiDAR 
data. 
 

Table 2.3 presents the number and percentage of correctly detected trees, 
omission and commission errors, as well as the overall accuracy index 
based on high-density LiDAR data. As can be seen in the table, the total 
accuracy index for tree detection from the pit-free CHM (74.2%) is higher 
than from the smoothed CHM (70.6%). For the 33 measured deciduous 
trees (Fraxinus excelsior, Populus tremula), the detection accuracy was 
51.5% for the pit-free CHM and 45.5% for the smoothed CHM. For 
coniferous trees, the overall detection rates were better. In addition, we 
tested whether there is a statistically significant difference between the 
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number of correctly detected trees using the CHMs derived from the 
Gaussian method and the pit-free method. The Chi-square test showed a 
statistically significant difference between the number of correctly 
detected trees in the smoothed CHM (511) and the pit-free CHM (544): x2 
= 4.302 and p = 0.038. 

Table 2.3: Tree detection results for the smoothed CHM and the pit-free CHM. Both 
models have a pixel size of 0.15 m and were derived from high-density LiDAR data. 

Field-measured trees Gaussian Smoothed CHM  Pit-free CHM  

number of 
trees 

Species 
Correct   
n (%) 

Omission  
n (%) 

Commission 
n (%) 

AI 
 (%) 

 
Correct   
n (%) 

Omission  
n (%) 

Commission 
n (%) 

AI 
(%) 

33 
deciduous 
trees 

19 (57.5) 14 (42.5) 4 (12.1) 45.5  21 (63.6) 12 (36.4) 4 (12.1) 51.5 

29 Larix decidua 26 (89.6) 3 (10.4) 3 (10.4) 79.3  25 (86.2) 4 (13.8) 2 (6.8) 79.3 

325 
Pinus 
sylvestris 

261(80.3) 64 (19.7) 13 (4.0) 76.3  273(84.0) 52 (16.0) 23 (7.0) 76.9 

307 Pinus uncinata 205(66.8) 102 (33.2) 1 (0.3) 66.4  225(73.3) 82 (26.7) 0 (0.0) 73.3 

694 Total 511(73.7) 183(26.3) 21 (3.0) 70.6  544(78.4) 150 (21.6) 29 (4.1) 74.2 

 
The results of the tree detection assessment in evaluating the pit-free 
algorithm based on poor quality LiDAR data can be seen in Table 2.4. As 
expected, the decrease of the point density from 160 point/m2 to 7 point/m2 
resulted in a very low accuracy (i.e. more commission error) when using 
Gaussian filters for both deciduous and coniferous trees. The pit-free CHM 
improved the total accuracy of the tree detection in comparison to the 
smoothed CHM, resulting in Accuracy Index values of 67.7% and 35.7%, 
respectively. Considering all 694 reference trees, 74.8% of the trees were 
detected correctly in the pit-free CHM and 69.8% in the smoothed CHM. 
The total commission error was 34% for the smoothed CHM, while it was 
only 6.9% for the pit-free CHM. The total omission error was 25.2% for 
the pit-free CHM and 30.2% for the smoothed CHM. In addition, the Chi-
square test indicated a statistically significant difference between the pit-
free CHM and the smoothed CHM, with the pit-free CHM resulting in a 
higher number of correctly detected trees (x2 = 4.403, p = 0.036). 
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Table 2.4: Tree detection results for the smoothed CHM and the pit-free CHM. Both 
models have a pixel size of 0.50 m and were derived from low-density LiDAR data. 

Field-measured trees Gaussian Smoothed CHM  Pit-free CHM  

number of 
trees 

Species 
Correct   
n (%) 

Omission  
n (%) 

Commission 
n (%) 

AI 
 (%) 

 
Correct   
n (%) 

Omission  
n (%) 

Commission 
n (%) 

AI 
(%) 

33 
deciduous 
trees 

17 (51.5) 16 (48.5) 10 (30.3) 21.2  20 (60.6) 13 (39.4) 8 (24.2) 33.3 

29 Larix decidua 26 (89.7) 3 (10.3) 6 (23.0) 69  26 (89.7) 3 (10.3) 1 (3.4) 86.2 

325 
Pinus 
sylvestris 

257(79.0) 68 (21.0) 139 (42.7) 36.3  268(82.5) 57 (17.5) 35 (10.7) 71.7 

307 Pinus uncinata 184(60.0) 123 (40.0) 81 (26.3) 33.6  205(66.8) 102 (33.2) 4 (1.3) 65.5 

694 Total 484(69.8) 210 (30.2) 236 (34.0) 35.7  519(74.8) 175 (25.2) 48 (6.9) 67.7 

 
The range of DBH values in the study site (Table 2.5) allowed us to assess 
how the pit-free CHM compared to the smoothed CHM for both datasets. 
Trees with a DBH of more than 20 cm were successfully detected with 
both different types of CHM and data. However, a large portion of the 
missed trees had a DBH of less than 20 cm, with 71.3% and 62% of them 
correctly detected with a pit-free CHM using high- and low-density data, 
respectively. Only 60.4% and 50.3% of trees this size were detected with 
a smoothed CHM derived from high- and low-density data, respectively. 
The Chi-square test showed a significant difference between the pit-free 
CHM and the smoothed CHM regarding the number of correctly identified 
trees with DBH less than 20 cm (high-density: p = 0.009; low-density: p = 
0.008). However, there was no significant difference between the types of 
CHM in detecting trees with a DBH of more than 20 cm (high-density: p 
= 0.0714; low-density: p = 0.646) or more than 40 cm (high-density: p = 
0.745; low-density: p = 1.000).  
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Table 2.5: Proportion of correctly identified trees for the three stem diameter classes for 
each CHM and point density. 

    All (n= 694) 

Portion of DBH range (cm) < 20 (n = 258) 20-40 (n = 397) > 40 (n = 39) 

High-density 
LiDAR  

smoothed CHM 156 (60.4 %) 322 (81.1 %) 33 (84.6 %) 

Pit-free CHM 184 (71.3 %) 326 (82.1 %) 34 (87.1 %) 

Low-density 
LiDAR  

smoothed CHM 130 (50.3 %) 322 (81.1 %) 32 (82 %) 

Pit-free CHM 160 (62 %) 327 (82.3 %) 32 (82 %) 

2.5 Discussion 
One of the challenges in creating a canopy height model through 
interpolation of first returns is that pits appear whenever a laser beam is 
able to penetrate a tree crown deeply before it generates the first return. 
Based on this observation we propose a new “pit-free” algorithm, which is 
able to remove pits efficiently and shows good potential for improving the 
detection of forest trees. Our algorithm is novel in that it removes the data 
pits directly from the LiDAR point clouds during the CHM creation. Other 
approaches, including automated methods (e.g. a smoothing filter) and 
semi-automated methods (i.e. a pit-filling algorithm) do not accurately 
target only the pits, but alter all pixels of the CHM raster (Ben-Arie et al., 
2009; Shamsoddini et al., 2013). Moreover, automated and semi-
automated methods do not consider the natural 3D structure of individual 
tree crowns when removing height variations. They consider the crown 
shape of forest trees as a circle (in nadir view on the raster CHM) (Zhao et 
al., 2013). 

Our algorithm makes use of the knowledge that a tree crown tends to create 
LiDAR returns at a wide range of heights and generates a set of partial 
CHMs to remove the pits. There are two important thresholds in generating 
the partial CHMs: 1) the height thresholds, which define the set of partial 
CHMs; and 2) the rasterization threshold, which includes only those 
triangles with edge lengths below a particular value. There is a direct 
relationship between the number of partial CHMs (e.g. CHM02 to CHM15) 
and the number of height thresholds (e.g. 2, 5, 10 and 15 m). When we 
decrease the spacing between height thresholds and consequently use a 
larger number of partial CHMs, shallower pits (i.e. with less variation in 
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height) are removed from the CHM across all vegetation levels. When we 
increase the rasterization threshold and consequently include larger 
triangles in the partial CHMs, larger pits (i.e. covering greater areas) are 
removed as well. Both thresholds, but especially the latter, change the 
appearance of the morphological structure of the tree crown. In this study, 
we experimentally selected height thresholds every 5 m for the partial 
CHMs of the taller trees (i.e. high vegetation class). The assignment of 
height thresholds was successfully applied here to CHMs with average tree 
heights of 13.5 m, but some variation in DBH, as shown in table 2.5; 
further research will establish performance of such thresholds on CHMs 
generated for different types of forest. We discovered that 0.45 m and 1.5 
m are suitable rasterization thresholds for the high-density and low-density 
LiDAR data, respectively (i.e. the length of 3 pixels in each CHM). A 
larger threshold may increase the omission error in tree detection because 
it then becomes more likely for triangles from neighboring crowns to join 
together during rasterization. Although we evaluated the suitability of 
these thresholds for detecting individual trees, it would be useful to study 
their effect regarding the morphological structure of tree crowns further. 

Our results show that the pit-free algorithm is visually superior to the 
Gaussian smoothing filter. Data pits are evident in the CHM00 raster 
(standard CHM) generated through standard Delaunay TIN rasterizing of 
all first returns. Nearby points with similar x and y coordinates but 
different heights tend to form small and steep triangles in the Delaunay 
TIN. When the x and y raster position of a CHM pixel falls within such a 
triangle, the linearly-interpolated height value of this cell may drastically 
differ from that of neighboring cells. The Gaussian filter generates new 
values for all cells based on the values of their nearest neighbors, thus 
affecting the original structure of the tree crown, especially when using 
low-density LiDAR data. By contrast, our pit-free algorithm removes pits 
from the CHM without altering the value of any other cells and thus 
preserves the original structure of tree crowns, for small trees as well, for 
both datasets. The pit-free algorithm offers the possibility to efficiently 
acquire detailed information on tree crown characteristics that play a 
critical role in a variety of applications (e.g., ecological, hydrological and 
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meteorological) sensitive to vegetation evolution at local and regional 
scale. 

We also evaluated the algorithm by comparing the accuracy of tree 
detection using the pit-free CHM versus the smoothed CHM. The 
statistical analysis showed that there is a significant difference, with the 
pit-free CHM producing a higher number of correctly detected trees with 
high-density (p = 0.038) as well as low-density (p = 0. 036) LiDAR data.  
The result indicated the robustness of the pit-free algorithm at individual 
tree level in removing data pits for all crown sizes. The Gaussian method, 
however, reduces the effect of the pits based on a predefined window 
kernel size that cannot be optimal for all different crown types, especially 
at tree level (Shamsoddini et al., 2013). Compared to the Gaussian filter 
our algorithm is also significantly better at correctly detecting small trees 
(DBH of less than 20 cm) for both LiDAR datasets. Because the pit-free 
algorithm does not smooth the CHM, it does not remove true treetops of 
small trees as happens with the Gaussian filter (Hyyppä et al., 2000; 
Kaartinen et al., 2012; Säynäjoki et al., 2008; Solberg et al., 2006). Our 
algorithm was only evaluated for CHMs generated from first LiDAR 
returns as such CHMs are commonly used for tree detection. However, the 
study of Hyyppä et al. (2012) showed that creating CHMs from last 
LiDAR returns can also be used for locating individual trees. Last returns 
might show greater variation in height as the laser pulses will either 
penetrate all the way to the ground, or reach only the middle of the tree, or 
already get stuck in the crown. We believe that our pit-free algorithm 
benefits CHMs generated from both first and last return data. 

The results indicate that the pit-free algorithm is especially successful for 
LiDAR data with many pits, such as our artificial example data where a 
small footprint laser beam samples the canopy with low density. Here the 
pit-free algorithm results in an accuracy index of 67.7%. This is 
particularly impressive compared to the Gaussian filtering, which 
produces a low accuracy index of 35.7%. Though many studies have 
underlined the importance of high density LiDAR data to improve tree 
detection, the result of this study suggests that laser point density has less 
impact on tree detection than the pit removal method. The study by 
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Shamsoddini et al. (2013) also revealed that the accuracy of tree attribute 
estimation, using low point density LiDAR data, will vary significantly 
depending on the particular pit removal algorithm chosen. The results of 
this study demonstrate with low point density LiDAR data, our pit-free 
algorithm will yield a higher accuracy regarding tree detection than 
Gaussian smoothing will. 

2.6 Conclusions 
In this study, we introduced a novel pit-free algorithm that can construct 
pit-free CHMs directly from LiDAR data. The impact of the pit-free 
algorithm on tree detection accuracy was investigated and compared with 
the Gaussian smoothing method. The results reveal that our algorithm can 
be adapted to work with different LiDAR point densities, and demonstrates 
a statistically significant improvement in the accuracy of tree detection. It 
will be interesting to investigate whether our pit-free CHMs also improves 
height estimation, crown segmentation and subsequent biophysical 
parameters such as biomass. 
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Chapter 3  
 
Effect of slope on treetop detection using a 
LiDAR canopy height model* 
  

                                          
* This chapter is based on: 
Khosravipour, A., Skidmore, A.K., Wang, T., Isenburg, M., Khoshelham, K., 2015. 
Effect of slope on treetop detection using a LiDAR Canopy Height Model. ISPRS Journal 
of Photogrammetry and Remote Sensing, 104, 44-52. 
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Abstract 

Canopy Height Models (CHMs) or normalized Digital Surface Models 
(nDSM) derived from LiDAR data have been applied to extract relevant 
forest inventory information. However, generating a CHM by height 
normalizing the raw LiDAR points is challenging if trees are located on 
complex terrain. On steep slopes, the raw elevation values located on either 
the downhill or the uphill part of a tree crown are height-normalized with 
parts of the digital terrain model that may be much lower or higher than 
the tree stem base, respectively. In treetop detection, a highest crown return 
located in the downhill part may prove to be a “false” local maximum that 
is distant from the true treetop. Based on this observation, we theoretically 
and experimentally quantify the effect of slope on the accuracy of treetop 
detection. The theoretical model presented a systematic horizontal 
displacement of treetops that causes tree height to be systematically 
displaced as a function of terrain slope and tree crown radius. Interestingly, 
our experimental results showed that the effect of CHM distortion on 
treetop displacement depends not only on the steepness of the slope but 
more importantly on the crown shape, which is species-dependent. The 
influence of the systematic error was significant for Scots pine, which has 
an irregular crown pattern and weak apical dominance, but not for 
mountain pine, which has a narrow conical crown with a distinct apex. 
Based on our findings, we suggest that in order to minimize the negative 
effect of steep slopes on the CHM, especially in heterogeneous forest with 
multiple species or species which change their morphological 
characteristics as they mature, it is best to use raw elevation values (i.e., 
use the un-normalized DSM) and compute the height after treetop 
detection. 
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3.1 Introduction 
Information on individual trees is critical for a variety of forest activities 
and for environmental modeling at the local and regional scales (Lichstein 
et al., 2010). In the last decade, airborne Light Detection and Ranging 
(LiDAR) has become a reliable remote sensing technique for estimating 
individual tree parameters, due to its capability to generate detailed and 
very precise three-dimensional tree information (Hyyppä et al., 2008; Lim 
et al., 2003b). 

As an initial and important step in any analysis of LiDAR data on 
individual trees, treetop detection has attracted much attention and 
research (Hosoi et al., 2012; Hyyppä et al., 2012; Jing et al., 2012a; 
Kaartinen et al., 2012; Popescu and Wynne, 2004; Vastaranta et al., 2011). 
Identifying the correct treetop can provide accurate information on crown 
characteristics and the tree height information, which in turn are useful 
inputs for growth and volume estimation models (Gebreslasie et al., 2011; 
Vastaranta et al., 2011; Wulder et al., 2000). A widespread approach is to 
identify local maxima, which generally correspond to the location and 
height of individual trees, and then to construct crown segments 
(Falkowski et al., 2006; Næsset and Økland, 2002; Solberg et al., 2006; 
Véga and Durrieu, 2011). 

The local maxima are typically obtained from the height variation of a 
LiDAR-derived Canopy Height Model (CHM), also known as a 
normalized Digital Surface Model (nDSM) (Forzieri et al., 2009; Li et al., 
2012; Persson et al., 2002; Yu et al., 2011). There are two ways to create 
a CHM: with rasters or with point clouds (Li et al., 2012; Persson et al., 
2002). When working with rasters, the LiDAR ground returns are used to 
create a raster DTM (Digital Terrain Model), and the highest or first 
LiDAR returns are used to create a raster DSM (Digital Surface Model). 
Then the raster DTM is subtracted from the raster DSM to create the final 
raster CHM (Lim et al., 2003b). When working with point clouds, the 
classified LiDAR is height-normalized by replacing the raw elevation of 
each return (i.e. its z coordinate) with its height above the DTM 
(Khosravipour et al., 2014; Van Leeuwen et al., 2010). Either way, the end 
result is the absolute canopy height above the bare-earth terrain surface. 
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Although the procedure of computing local maxima from a CHM is 
conceptually simple, the accuracy of its result largely depends on the 
quality of the acquired LiDAR data, its processing and/or post-processing, 
and the forest conditions (Kaartinen et al., 2012). For example, the use of 
a higher density of laser pulse footprints improves the chance of the laser 
hitting the treetops (Hyyppä et al., 2008; Lefsky et al., 2002), and the use 
of an efficient local maxima technique enhances treetop identification by 
reducing commission and omission errors (Chen et al., 2006; Kaartinen et 
al., 2012; Vauhkonen et al., 2012a). A new study suggests that the 
accuracy of treetop detection can be improved further by removing height 
irregularities in the CHM (Khosravipour et al., 2014). Moreover, a number 
of studies indicate that the various forest conditions (e.g., crown sizes, 
ages, site types, tree species and forest density) can significantly influence 
intermediate LiDAR derivatives and thereby the performance of tree 
detection algorithms (Falkowski et al., 2008; Pitkänen et al., 2004; 
Popescu and Wynne, 2004; Vauhkonen et al., 2012a; Yu et al., 2011).  

Complex forest terrain presents a challenging problem, as it affects the 
performance of the height normalization step by distorting the CHM, 
which can reduce the accuracy of extracted tree biophysical parameters 
(Vega et al., 2014). On steep slopes, the raw elevation values located, for 
example, on either the downhill or the uphill part of a tree crown are 
height-normalized with parts of the DTM that may be much lower or 
higher than the tree stem base, respectively (Breidenbach et al., 2008). 
Therefore, in the CHM, the downhill part of the crown will “rise” while 
the uphill part will “sink”, causing the entire tree crown to be 
systematically distorted. In treetop detection, the “rising” branch 
overhanging lower terrain in the downhill part can turn into a “false” local 
maximum that is distant from the true treetop. This problem was posed in 
Isenburg’s keynote speech at Silvilaser 2012 (Isenburg, 2012). He found a 
CHM that overestimated true tree height by more than double: eucalyptus 
trees on steep and eroded slopes in the Canary Island of Tenerife were 
estimated as being 51 meters tall whereas their true height was 25 meters. 
Takahashi et al. (2005) and Véga and Durrieu (2011) also reported that 
one of the sources of tree height overestimation from LiDAR-derived 
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CHM is a horizontal offset error between field and LiDAR treetop 
detection, particularly on steeper slopes. They concluded the difference 
may be due to the LiDAR-derived treetop simply being identified as the 
maximum value of CHM within the crown area on steeper slopes. Heurich 
et al. (2003) pointed out that this error increases for leaning trees and/or 
steeper terrain slopes. Breidenbach et al. (2008) reported an increasing 
underestimation of the CHM-derived height with steeper upward slopes 
and vice versa for downward slope, which can cause tree height – one of 
the most important stand characteristics determined in forest inventory – 
to be misinterpreted, thereby affecting estimates of subsequent biophysical 
parameters such as biomass, volume and carbon sequestration. The recent 
study of Vega et al. (2014) suggested using un-normalized elevation values 
(i.e. using the DSM), and computing the height after a tree crown 
segmentation step, to avoid the undesirable effect of steep slopes on the 
CHM. However, until now, the influence of the normalization process on 
treetop detection and height estimation has neither been studied nor 
quantified. 

The aim of this study was to quantify the effects of slope gradient on the 
accuracy of treetop detection when using a LiDAR-derived CHM. We first 
present a simplified theoretical model to illustrate how normalization 
causes a systematic error in CHM-based treetop detection when an 
individual tree is located on a slope. We then assess the accuracy of treetop 
detection by using both the CHM (i.e. the normalized elevations) and the 
DSM (i.e. un-normalized elevations). Next, we compute the positional 
difference between the same tree detected in both the CHM and the DSM, 
in order to investigate the influence of the slope on the horizontal 
displacement of CHM-detected trees and its effect on subsequent height 
estimation. 

3.2 Theoretical model 
The systematic error in CHM-based treetop identification can be 
quantified by using a conceptual model that is based on field measurement 
of tree heights. In the field, the original tree height is determined as a 
vertical distance from tree apex to the upslope root crown (Husch et al., 
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1982). According to the model (illustrated graphically in Figure 3.1), the 
height of a tree is calculated as the magnitude (length) of a vector h 
originating at the base of the tree and ending at the treetop. Without loss 
of generality, we can assume that the tree height is formulated as: 

 ݄ ൌ ܾ   (3.1) ݎ2

where b is the crown base height and r is the radius of the hypothetical tree 
crown. 

When computing the tree height from the height-normalized model (i.e., 
CHM) the distance from the highest crown return to its projection on the 
DTM is used, which introduces a systematic error when the terrain is 
sloping (Takahashi et al., 2005; Véga and Durrieu, 2011; Vega et al., 
2014). We assume a tree on a terrain of constant slope with an idealized 
spherical crown is always hit at the highest point across the canopy by the 
laser pulses (i.e. no canopy penetration). Although a tree crown is never 
have perfectly spherical in nature, tree crowns (e.g., coniferous or 
deciduous) are typically considered to be circular in nadir view (Biging 
and Gill, 1997; Doruska and Burkhart, 1994). Then we can use the 
following simplified theoretical model and estimate the CHM-derived tree 
height as the local maximum of the function hCHM(x) within –r ≤ x ≤ r: 

 ݄ுெሺݔሻ ൌ ܾ  	ܿሺݔሻ   ሻ (3.2)ݔሺݏ

where b is the constant crown base height, and c(x) and s(x) are the 
contribution of the tree crown and slope in the estimation of CHM-derived 
tree height, respectively. 

The crown contribution c(x) includes a constant r as the crown radius, and 
a vertical distance that is a function of the horizontal displacement x from 
the original treetop (see Figure 3.1). This perpendicular distance can be 
calculated with the Pythagoras theorem that relates the lengths of the three 
sides of any right triangle as: 

ܿሺݔሻ ൌ ݎ  ଶݎ√ െ	ݔଶ (3.3) 

The slope contribution s(x) describes a vertical distance that is also a 
function of the horizontal displacement x from the original treetop. It is 
based on the terrain slope that is assumed to be constant below the tree: 
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ሻݔሺݏ ൌ െ݉(3.4) ݔ 

where m is the constant terrain slope. 

 
Figure 3.1: Schematic diagram of the geometry involved in the treetop detection based 
on the effect of slope gradient on a LiDAR-derived CHM. 
 
The resulting function hCHM(x) expresses the tree height that we expect to 
measure for our idealized circular crown along a line that goes through the 
true treetop in the direction of the steepest slope for a given radius r and a 
constant slope m. The xmax is the x that locally maximizes the function 
hCHM(x) within the crown diameter (i.e. –r ≤ x ≤ r). The xmax estimates the 
expected systematic horizontal displacement from the true treetop (x = 0). 
The value hCHM(xmax)  estimates the expected CHM-derived tree height. 

The two extrema xext – one local maximum and one local minimum – of the 
function hCHM(x) can be determined by finding the zero crossings of its 
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derivative function hCHM'(x) so that the xmax can be found by solving 
h'CHM(x) = 0: 

 ݄ுெሺݔሻ	 ൌ 	ܾ  ݎ 	√ݎଶ െ	ݔଶ െ  (3.5) ݔ݉

݄′ுெሺݔሻ	 ൌ െ	ݔ ඥݎଶ െ	ݔଶ⁄ െ ݉ 

݄′ுெሺݔ௫௧ሻ	 ൌ െݔ ඥݎଶ െ	ݔଶ⁄ െ ݉ ൌ 0 

௫௧ݔ ൌ േ	݉ݎ ඥ݉ଶ  1⁄ 	 

The horizontal displacement is always directed downhill. Represented in 
our schematic diagram (Figure 3.1), the horizontal displacement will be 
negative for positive slope (m > 0) but positive for negative slopes (m < 0). 

ݐ݈݊݁݉݁ܿܽݏ݅݀	݈ܽݐ݊ݖ݅ݎ݄ ൌ  ௫ݔ

௫ݔ  ൌ െ	݉ݎ √݉ଶ  1⁄  (3.6) 

By substituting the x value in the CHM-derived tree height function 
(equation 3.2) with the result obtained for xmax, we can estimate the 
expected CHM-derived tree heights. The expected error difference 
(vertical displacement) can be calculated by subtracting the true tree height 
(equation 3.1) from the expected CHM-derived one (equation 3.2): 

ݐ݈݊݁݉݁ܿܽݏ݅݀	݈ܽܿ݅ݐݎ݁ݒ ൌ 	݄ுெሺݔ௫ሻ െ ݄ 

ݐ݈݊݁݉݁ܿܽݏ݅݀	݈ܽܿ݅ݐݎ݁ݒ  ൌ ሺ√݉ଶݎ  1 െ 1ሻ (3.7) 

Though the theoretical model over-simplifies crowns in the real world, it 
is adequate to demonstrate the systematic error introduced by sloping 
terrain during the normalization step: the height of LiDAR canopy returns 
is overestimated downhill of the tree stem and it is underestimated uphill 
of the tree stem. This systematic error is one of the sources of error that 
usually leads to tree height being misinterpreted due to steep slope 
(Breidenbach et al., 2008; Takahashi et al., 2005; Véga and Durrieu, 2011). 

The formulas in equation (3.6) and (3.7) suggest that for a constant slope 
(m) both the expected horizontal and vertical displacement increase 
linearly when the crown radius (r) increases (an elliptical crown behaves 
similarly). However, for a constant radius (r), when slope increases, slope 
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effect on horizontal displacement increases asymptotically whereas slope 
effect on vertical displacement increases exponentially. As an example, we 
simulate the theoretical model for different slopes for a constant radius (r) 
of 3.5m (Figure 3.2). The asymptotic effect on horizontal displacement is 
clearly visible when the slope approaches 40 degrees. The effect of slope 
on vertical displacement increases exponentially, especially when the 
slope reaches 45 degrees, and goes to infinity as the slope approaches 90 
degrees. 

 
Figure 3.2: The relationship between slope, horizontal displacement, and vertical 
displacement for an idealized spherical crown with a radius of 3.5 meters. 

3.3 Experimental data 

3.3.1 Study area 
Bois Noir (44° 23′ N, 6° 45′ E) is a forest in the Barcelonnette basin in the 
southern French Alps (Figure 3.3). The northern part of Bois Noir is 
characterized by irregular rugged topography with slope gradients ranging 
from 10° to 35° (Thiery et al., 2007) and the southern part is characterized 
by extensive steep scree slopes of up to 70° (Razak et al., 2011b). The test 
area was 1.30 km2, with a cover predominantly of mountain Pine (Pinus 
uncinata) and Scots pine (Pinus sylvestris), at an elevation ranging from 
1400 to 2380 m above sea level (Razak et al., 2013). 
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Figure 3.3: Location of the Barcelonnette basin in the map of France (left) and the slope 
map of the Bois Noir Forest (right). 

3.3.2 Field data 
Field inventory data were collected during September 2011 and 2012. 
Some parts of the forest had been affected by a landslide that had caused 
the tree stems to bend and tilt. We used the landslide boundaries provided 
by Thiery et al. (2007) and Razak et al. (2011a) to establish 46 plots outside 
the landslide area. For this research, the measurements collected included 
tree location, tree crown diameter (in two perpendicular directions) and 
tree species determination (Table 3.1). The position of individual trees and 
the central point of each plot were recorded using the Leica 1200 
Differential GPS System and a total station (see Khosravipour et al. (2014) 
for more detail). The total number of trees sampled was 514. 
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Table 3.1: Descriptive statistics of the tree crown diameter measurements (m). 

3.3.3 LiDAR data and pre-processing 
The LiDAR data were acquired using a helicopter in July 2009. The small 
footprint full-waveform LiDAR system (RIEGL VQ-480i) utilized by 
Helimap has been developed specifically for mapping mountainous 
forested area (Vallet and Skaloud, 2004). The system was operated at a 
laser pulse repetition rate of 300-kHz and a scan width of 60° and 
performed on-line full-waveform analysis to extract up to five discrete 
returns for each pulse. The survey was flown 250 m above ground level, 
resulting in a mean footprint diameter of 75 mm on the ground. In order to 
increase the laser pulse density, the area was covered by seven overlapping 
flight lines. The mean point density of all return was 160 points/m2. 

The LiDAR data were stored separately in adjacent, non-overlapping tiles. 
The LiDAR points were retiled to a tile size of 300 m with a 15 m buffer 
along all sides of each tile, in order to avoid edge artifacts at the tile 
boundaries during tile-based processing (Isenburg et al., 2006b). The 
LiDAR points were classified into ground and non-ground returns, using 
automatic progressive TIN (triangular irregular network) densification 
filtering as developed by Axelsson (2000). Once classified, the ground 
returns point clouds were interpolated with a TIN by Delaunay 
triangulating (Isenburg et al., 2006a), which was then rasterized onto a grid 
with 0.15 m2 spatial resolution, to create the DTM. This LiDAR-derived 
DTM of the Bois Noir forest was quantitatively and qualitatively assessed, 
using procedures described by Razak et al. (2011b). The vertical accuracy 
of the DTM varied between 0.28 and 0.36 m compared to the field data, 
depending on whether the terrain was open or forested. From this DTM a 
slope gradient raster was computed with ESRI’s ArcGIS software, which 
implements the third-order finite difference method (Horn, 1981). The 

 All 
(n= 514) 

Scots pine 
 (n=263) 

mountain pine 
 (n=251) 

Minimum 0.50 0.90 0.50 

Maximum 9.10 9.10 6.70 

Median 2.50 3.45 1.70 

Mean 2.82 3.66 1.94 

Std Dev 1.47 1.40 0.92 
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slope at each tree stem location used in our analysis was calculated as the 
mean terrain slope within the reference tree crown. 

The first returns were used for generating the DSM and the CHM. Such 
LiDAR-derived surface models often contain so-called “data pits” which 
occur, for example, when a laser pulse penetrates deep into the canopy 
before producing its first return, or when multiple flight lines that scan the 
canopy from different viewpoints are merged (Axelsson, 1999; Ben-Arie 
et al., 2009; Leckie et al., 2003). The pit-free algorithm, developed by 
Khosravipour et al. (2014), was used for generating the pit-free CHM. This 
algorithm consists of two stages: the first stage normalizes the height of 
the LiDAR returns and generates a standard CHM raster from all first 
returns and several partial CHM rasters from only those first returns that 
are above a set of increasing height thresholds (e.g., above 2 m, 5 m, 10 m 
and 15 m). The second stage composes the standard and all partial CHM 
rasters into one final CHM by keeping for each pixel the highest value 
across all CHMs. A variation of the pit-free algorithm was used to generate 
the pit-free DSM simply by omitting the normalization step and operating 
on the original elevations. The CHM and DSM were rasterized to the same 
0.15 m2 grid spacing as that of the DTM. The pre-processing was 
implemented by batch-scripting several modules of the LAStools software 
(rapidlasso GmbH, 2014). 

3.3.4 Individual treetop detection 
In order to extract individual treetops, a method based on morphological 
opening and reconstruction was applied to both the CHM and the DSM. 
The mathematical morphological opening operation (erosion followed by 
dilation) with an appropriate structuring element (which defines a 
neighborhood around a given point) is an image-processing technique that 
can separate different objects (Serra, 1982; Vincent, 1993) and preserve 
the structural information of each object, based on the structuring 
element’s shape (Wang et al., 2004). The shape and size of the structuring 
element are commonly based on the shape and size of the objects of 
interest. In this study, a flat disk with a diameter of 1.05 m (7 pixel sizes) 
was experimentally found appropriate (based on the field crown size data) 
to identify the treetops. The opening operations removed “foreground” 
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objects (i.e., treetops) that were smaller than the selected structuring 
element in the image. The result is an opened image. Afterwards, 
morphological reconstruction, which is a very efficient method for 
extracting regional maxima (Khoshelham et al., 2010; Vincent, 1993), was 
implemented. The opened image was selected as a marker under the 
original canopy surface as a mask image, in order to retrieve the shape of 
tree crown boundaries that were smoothed by the opening operation. 
Subsequently, the reconstructed image was subtracted from the original 
canopy surface in order to isolate the individual treetops that had been 
removed by the opening operation as regional maxima. The local maxima 
of each regional component were extracted from the image. They are the 
estimated treetop points (x, y, and z). For the CHM, the z coordinate of 
each treetop point corresponds to the estimated tree height. For the DSM, 
the z coordinate of each treetop point was height-normalized using its 
projection onto the DTM. 

3.3.4.1 Accuracy assessment of individual treetop detection 

The performance of the treetop detection was evaluated by comparing the 
automatically detected trees from both the CHM and DSM with the trees 
measured in the field. If one treetop had been detected within a reference 
crown boundary, the detection was considered correct. If more than one 
treetop was detected, the closest reference tree was considered as correct, 
and other trees were then defined as commission errors. However, if no 
LiDAR-detected treetop was found, this error was considered as an 
omission error. Subsequently, the distance between the trees detected from 
the CHM and those detected from the DSM was measured, in order to 
calculate the horizontal displacement of detected trees in the CHM. The 
linear regression model was used to find the relationship between the 
horizontal displacement and the slope of the terrain. Due to the lack of 
accurate tree height measurements in the field for our super-high density 
LiDAR points, it was not feasible to validate the tree heights derived from 
the CHM and the DSM. Thus, only the differences between the height 
measurements in the CHM and the DSM were used to find the relationship 
between the vertical displacement and the slope of the terrain. In addition, 
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a visual 3D comparison between the CHM and the DSM provided further 
insight into the results. 

3.4 Experimental results 
In order to create a CHM for detecting individual treetop position, the 
normalization process was applied to the elevation of the LiDAR points. 
Figure 3.4 shows the distorting influence of slope on this LiDAR height 
normalization on the original morphological structure of the crown of a 
Scots pine and the crown of a mountain pine. As can be seen, the Scots 
pine tree, which has a wider, more irregular crown pattern and weaker 
apical dominance, is affected more than the mountain pine tree, which has 
a smaller and narrower crown. 

 
Figure 3.4: The effect of slope on the LiDAR data before normalization (a) and after 
normalization (b) for Scots pine and mountain pine on a slope gradient of approx. 35 
degrees. 
 
In order to quantify the effect of the slope, the treetop detection technique 
was applied to both the CHM and DSM. Figure 3.5 shows the CHM raster, 
examples of trees detected in both the CHM and the DSM, and also 
omission and commission errors. The Figure 3.5 also illustrates an 
example of the horizontal displacement of a CHM-detected treetop 
position compared to its location as detected in the corresponding DSM. 
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Figure 3.5: An example of identified treetops, omission and commission errors, and the 
horizontal displacement between a CHM-detected and a DSM-detected treetop position. 
 
Table 3.2 presents the numbers and the percentages of correctly detected 
trees, omission and commission errors, assessed for Scots pine and 
mountain pine. The overall tree detection rate of both species was high 
(“Correct” Table 3.2). Note that the number of false trees results 
(“Commission”) was higher for Scots pine than for mountain pine. 
 
Table 3.2: tree detection results for the CHM and the DSM. 

Field-measured trees CHM   DSM 

number of  
trees 

Species 
Correct    
n (%) 

Omission   
n (%) 

Commission  
n (%) 

  
Correct 
n (%) 

Omission   
n (%) 

Commission  
n (%) 

263 Scots pine 215(81.7) 48 (18.2) 30 (11.4)   223(84.8) 40 (15.1) 25 (9.5) 

251 mountain pine 207(82.4) 44 (17.5) 1 (0.3)   206(82.0) 45 (17.9) 0 (0.0) 

514 Total 422(82.1) 92(17.8) 31(6.0)   429(83.4) 85 (16.5) 25 (4.8) 

 
Out of a total 514 trees, 395 trees were detected in both the CHM and the 
DSM. The range of positional differences between the same CHM-
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detected and DSM-detected trees was between 0.15 m (one pixel) and 1.80 
m. Because remotely sensed data of high spatial resolution is often 
spatially auto-correlated (Chen et al., 2012; Hu et al., 2014), we used the 
range of semi-variogram statistics in order to adjust the minimum distance 
of the horizontal displacement of treetops. The semi-variograms (using the 
spherical model) of the both CHM and the DSM images indicated that 
pixels are highly correlated within a range of 0.35 m. Therefore, treetops 
detected in both the CHM and DSM within 0.35 m of each other were 
assumed to belong to the same tree (i.e. to have a positional difference of 
0.0 m). 

The numbers and percentages of the same treetops that were correctly 
detected from both the CHM and the DSM are reported in Table 3.3 per 
tree species and for three different slope ranges (i.e. 0 – 15, 15 – 30, and 
30 – 45 degrees). On a terrain slope of less than 15 degrees there was no 
significant horizontal displacement of treetops between the CHM and the 
DSM, but the number of affected trees increased with steepness of the 
terrain. The maximum displacement of CHM-detected treetops from 
DSM-detected treetops was 1.80 m and occurred on slopes of more than 
30 degrees. As expected, the horizontal positional error caused an 
increasing vertical displacement error (i.e., an overestimation of CHM-
derived tree height). The maximum height overestimation was 1.78 m for 
slope of more than 30 degrees.  However, the effect of the systematic error 
became evident only for Scots pine trees, not for mountain pine trees. A 
remarkable 46.6 percent of correctly detected Scots pine trees located on 
steep terrain (more than 30 degrees) were affected by the systematic error, 
whereas the conical mountain pines were not affected by this error.  
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Table 3.3: Percentages and numbers of correctly detected trees located on three different 
slopes. 

Field-measured trees Linked CHM- and DSM- detected trees 

number 

of  

trees      

slope 

class 
species 

Total    

n 

without 

displacement    

n (%)  

with displacement  

n 

(%)  

Horizontal 

displacement (m) 

Vertical 

displacement (m) 

min max mean min max mean 

64 0-15 

Scots 

pine 

44 43 (97.7) 
1 

(2.2) 
0.42 0.42   0.10 0.10   

179 
15-

30 
142 126 (88.7) 

16 

(11.2) 
0.42 1.71 0.74 0.03 0.75 0.16 

20 
30-

45 
15 8 (53.3) 

7 

(46.6) 
0.80 1.80 1.39 0.01 1.78 0.97 

263   Total 201 177 (88.0) 
24 

(11.9) 
0.42 1.80 0.92 0.01 1.78 0.40 

81 0-15 

Mountain 

pine 

64 64 (100) 0(0.0)    
  

148 
15-

30 
114 111(97.3) 

3 

(2.6) 
0.45 1.27 0.73 0.07 0.14 0.10 

22 
30-

45 
16 16 (100) 0(0.0)    

  

251   Total 194 191(98.4) 
3 

(1.5) 
0.45 1.27 0.73 0.07 0.14 0.10 

 
A linear regression model using slope as the independent variable 
explained 54% of the variance associated with the positional displacement 
of CHM-detected Scots pine trees (Figure 3.6). The result of its ANOVA 
demonstrated that the regression model is significant when predicting the 
horizontal displacement of CHM-detected trees (F = (1,23) = 23.73, p < 
0.05). The field-measured crown radius of Scots pine species was also 
plotted against the horizontal displacement. Surprisingly, however, there 
was no correlation between the magnitude of the systematic error and the 
crown size within Scots pine trees (Figure 3.7). 
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Figure 3.6: Horizontal displacement of the Scots pine treetops regressed against slope. 
 

 
Figure 3.7: Horizontal displacement of the Scots pine treetops regressed against crown 
radius. 
 
The height differences between the CHM-derived tree height and DSM-
derived tree height were plotted against slope gradient. On average, the 
CHM-derived height was 0.40 m above the DSM-derived height, as was 
expected from our theoretical model. The absolute minimum difference 
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was 0.01 m and absolute maximum was 1.78 m. The regression model 
using slope terrain explained 48% of the variance associated with the 
vertical displacement rate (Figure 3.8). Its ANOVA result demonstrated 
the regression model is a significant model when predicting the height 
differences by slope (F = (1, 23) = 20.44, p < 0.05).  

 
Figure 3.8: Vertical displacement of the Scots pine trees’ height regressed against slope. 

3.5 Discussion 
One of the challenges when generating a CHM through height 
normalization is that a systematic error appears whenever trees are located 
on complex, sloping terrain. Based on this observation, we theoretically 
and experimentally quantified the effect of slope on the accuracy of treetop 
detection and its effect on the tree height estimation before and after height 
normalization. 

The theoretical model presented the systematic error in LiDAR-derived 
treetop detection and height estimation as a function of terrain slope 
surface and tree crown radius. For a constant radius, the horizontal 
displacement increases asymptotically with the slope and reaches its 
maximum at a value equal to the radius size; the vertical displacement 
increases exponentially and goes to infinity as the slope approaches 90 
degrees. For a constant slope, both the horizontal (i.e., treetop) and vertical 
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(i.e., height) displacement increase linearly, concomitantly with the crown 
radius. However, our idealized circular tree crown is different from the 
crowns that were measured as an average of two longest extending 
perpendicular directions in the field. This explains why we did not observe 
any correlation between the magnitude of the systematic error and the field 
crown size measurement. To better approximate other crown shapes, it 
would be possible to replace the circular crown contribution to the CHM-
derived tree height estimate with various non-circular functions. Our 
idealized theoretical model is intended to show that terrain slope 
systematically creates an error for all crown shapes but the actual 
magnitude of this error will vary with each individual shape. 

Our experimental results showed that the effect of CHM distortion on 

treetop displacement depends not only on the steepness of the slope but  

more importantly  on the crown shape, which is mainly determined by 
species. The influence of the systematic error was only evident for the 
Scots pine trees (which are have a larger average crown size), not for the 
mountain pine trees (which have a narrow, conical crown with distinct 
apex). Holmgren and Persson (2004) reported that tree species conical in 
shape, such as the mountain pine, have a lower 90th LiDAR height 
percentile than Scots pine. This suggests that the LiDAR returns from the 
apical portion of mountain pine (i.e. the highest 10%) are distinctly higher 
than other canopy returns. Hence, no matter how steep the slope, the apical 
portion always becomes the local maximum in both the CHM and the DSM 
and is always identified as the correct treetop. 

Our experimental results also showed that the effect of systematic error on 
horizontal displacement varies greatly among Scots pine trees. The 
probable reason is that the crown shape of Scots pine tends to differ with 
the age of the tree. Scots pine trees are conical when young but become 
more rounded and irregular as they mature (Holmgren and Persson, 2004; 
Ross et al., 1986). Local tree competition can also influence crown shape, 
with the resulting more slender and conical crown (Rouvinen and 
Kuuluvainen, 1997) being similar to the  crown shape of mountain pine. 
The higher percentage of the commission error also confirmed that the 
Scots pine crown shape is more irregular than that of mountain pine. 
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Previous studies such as Popescu and Wynne (2004) and Kato et al. (2009) 
have reported that rounder crowns resulted in individual trees being falsely 
delineated by local maxima techniques. 

According to the theoretical model, the height of LiDAR returns calculated 
from the distance between the highest crown return and its projection on 
the DTM on steep areas will be overestimated. Our experimental results 
confirmed that the average vertical displacement error between CHM-
derived tree height and DSM-derived tree height was a positive value, i.e., 
an overestimation of tree height by CHM. The cause was obviously the 
horizontal downhill displacement of CHM-detected trees on sloping 
terrain. A few researchers have suggested that the tree height 
overestimation error might be caused by the differences between field-
measured and LiDAR-derived heights on steeper slopes (Breidenbach et 
al., 2008; Takahashi et al., 2005; Véga and Durrieu, 2011). Our results 
demonstrate for the first time that – in steep terrain – the height 
normalization step causes systematic vertical errors, due to the horizontal 
displacement of treetops. Furthermore, we have shown that these errors 
depend on the crown shape of the species being measured. On the basis of 
our results, we recommend using raw elevation values (i.e., the un-
normalized DSM) and computing the height after treetop detection and/or 
tree crown segmentation, in order to minimize the negative effect of steep 
slopes on the CHM, especially a heterogeneous forest type consisting of 
multiple species, or species which change their morphological 
characteristics as they mature. 

3.6 Conclusions 
We have theoretically and experimentally shown in this paper that the 
LiDAR height normalization process systematically reduces the accuracy 
of treetop detection when trees are located on sloping terrain. Our 
experiments also showed that the effect of slope-distorted CHMs on 
treetop detection strongly depends on the tree’s crown shape, which is 
largely determined by its species. It would be interesting to investigate the 
effect of height normalization on various other non-conical crown shapes 
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(e.g., flat or ellipsoidal) located on terrain with a more complex topography 
(e.g. with gullies, mounds and other sudden local elevation changes). 
 
 
 



 

55 

Chapter 4  
 
Generating spike-free digital surface models 
using LiDAR raw point clouds: A new 
approach for forestry applications* 
  

                                          
* This chapter is based on: 
Khosravipour, A., Skidmore, A.K., Isenburg, M., 2016. Generating spike-free digital 
surface models using LiDAR raw point clouds: A new approach for forestry applications. 
International Journal of Applied Earth Observation and Geoinformation, 52, 104-114. 
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Abstract 
Accurately detecting single trees from LiDAR data requires generating a 
high-resolution Digital Surface Model (DSM) that faithfully represents the 
uppermost layer of the forest canopy. A high-resolution DSM raster is 
commonly generated by interpolating all first LiDAR returns through a 
Delaunay TIN. The first-return 2D surface interpolation struggles to 
produce a faithful representation of the canopy when there are first returns 
that have very similar x-y coordinates but very different z values. When 
triangulated together into a TIN, such constellations will form needle-
shaped triangles that appear as spikes that geometrically disrupt the DSM 
and negatively affect treetop detection and subsequent extraction of 
biophysical parameters. We introduce a spike-free algorithm that considers 
all returns (e.g. also second and third returns) and systematically prevents 
spikes formation during TIN construction by ignoring any return whose 
insertion would result in a spike. Our algorithm takes a raw point cloud 
(i.e., unclassified) as input and produces a spike-free TIN as output that is 
then rasterized onto a corresponding pit-free DSM grid. We evaluate the 
new algorithm by comparing the results of treetop detection using the pit-
free DSM with those achieved using a common first-return DSM. The 
results show that our algorithm significantly improves the accuracy of 
treetop detection, especially for small trees. 
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4.1 Introduction 
In recent years, airborne LiDAR (Light Detection And Ranging) has 
become a common remote sensing technique for producing forest 
inventory data (Lim et al., 2003b). Due to its capability in providing 
accurate and spatially detailed information on tree structure elements (such 
as branches and foliage), LiDAR technology can improve the accuracy of 
forest parameter retrieval at the single-tree level (Duncanson et al., 2014; 
Hyyppä et al., 2008; Popescu, 2007; Véga and Durrieu, 2011). Acquiring 
accurate single-tree parameters from LiDAR data has significant 
applications in a variety of forest-related activities, including monitoring 
forest regeneration (Chen et al., 2006), sustainable forest management 
(Wulder et al., 2008), biomass and carbon stock estimation (Liu et al., 
2010) and wildland fire risk assessment (Morsdorf et al., 2004). 

As a basic unit for analysis in forestry applications, the individual tree 
detection approach (including treetop detection and crown delineation) has 
attracted much attention in the LiDAR research community (Duncanson et 
al., 2014; Hyyppä et al., 2012; Jing et al., 2012a; Koch et al., 2006; Li et 
al., 2012; Lu et al., 2014; Mongus and Žalik, 2015; Popescu and Wynne, 
2004; Reitberger et al., 2009b). Unlike the optical imagery tree-detection 
approaches that are based on brightness or color variation (Pouliot et al., 
2002), the LiDAR-based individual tree detection approaches use the 
geometric information captured by the LiDAR data. The initial step in 
most such methods relies on the generation of a Digital Surface Model 
(DSM) describing the geometry of the uppermost layer of the canopy 
(Hyyppä et al., 2008). Tree detection approaches identify the local maxima 
in the generated DSM that are considered to correspond to the positions of 
the treetops. Subsequently, the local maxima are used as reference points 
(or seed points) for crown delineation. 

For such methods to be successful, the local maxima in the generated DSM 
have to correspond to actual treetops and for every actual treetop there 
needs to be a local maximum. The accuracy of local maxima detection 
relies on sufficiently high spatial resolution in the generated DSM, 
requiring a correspondingly high density of laser pulse footprints (Hyyppä 
et al., 2008; Lefsky et al., 2002). Local maxima techniques tend to use a 
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DSM with the highest possible resolution that represents the uppermost 
portion of the canopy layer with all the details that were captured. At very 
high spatial resolution (~10 cm) the morphology of individual trees can be 
detected (Wulder et al., 2000).  With decreasing spatial resolution, the 
DSM no longer has sufficient detail to represent smaller trees, resulting in 
higher omission errors (undetected treetops). A low resolution DSM can 
easily be constructed by binning all points onto a grid and keep the highest 
elevation per grid cell. However, a simple binning approach is not suitable 
for constructing a DSM at the highest possible resolution supported by the 
LiDAR as many grid cells will remain empty while many others will be 
filled with unnaturally low elevation compared to their neighbors. 
Typically, a DSM at the highest resolution is generated by interpolating 
all first LiDAR returns – often by Delaunay triangulating them into a 
Triangulated Irregular Network (TIN) (Axelsson, 1999; Clark et al., 2004; 
Gaveau and Hill, 2003; Hyyppä et al., 2008). However, a first-return 2D 
surface interpolation struggles to produce a faithful representation of the 
canopy when there are first returns that have very similar x-y coordinates 
but very different z values (Axelsson, 2000). This happens when first 
returns are generated within the tree crown or on the ground below the 
canopy. When triangulated together into a TIN, such constellations will 
form needle-shaped triangles that appear as spikes (Figure 4.1 (left)) and 
result in cells with unnatural elevation values called pits when the TIN is 
rasterized onto a regular grid (Figure 4.1 (right)). These extreme 
irregularities significantly affect the geometric structure of the resulting 
high-resolution DSM. This reduces the accuracy with which local maxima 
correspond to actual treetops – increasing the errors of omission 
(undetected trees) and commission (falsely detected trees) (Khosravipour 
et al., 2014; Shamsoddini et al., 2013; Solberg et al., 2006; Van Leeuwen 
et al., 2010). 
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Figure 4.1: The generated Delaunay TIN using only first returns (left) and the 
corresponding DSM raster with a resolution of 0.15 m (right) for an individual tree. 
 
The spikes usually appear in the TIN whenever a laser beam penetrates 
deeply into canopy branches and foliage before producing its first return 
(Ben-Arie et al., 2009; Persson et al., 2002). This not only causes the upper 
canopy surface to be underestimated (Gaveau and Hill, 2003; Lefsky et al., 
2002) but also creates valleys within the crowns that make it difficult to 
discern individual crowns (Chen et al., 2006; Pitkänen et al., 2004). Spikes 
are also formed when merging flight lines, which is often done to sample 
the vegetation with a high-density LiDAR system (Hyyppä et al., 2008; 
Vauhkonen et al., 2012a). Because different flight lines scan the canopy 
from different directions, laser beams can “peek under” the tree crown and 
produce first returns far below the canopy in the understory and/or even 
on the ground (Leckie et al., 2003). This may even occur for individual 
flight lines at off-nadir scan angles. Finally, the planimetric error between 
overlapping flight strips that results from errors in the GPS and IMU 
measurements can also create such constellations (Vosselman, 2008) – 
especially for small-footprint LiDAR. 

When rasterizing a first-return TIN onto a grid to create a raster DSM, 
many of the “spikes” in the TIN turn into “pits” in the raster. This is 
because the linearly-interpolated elevation value of any DSM raster cell 
whose x and y positions fall within a spike can be drastically different from 
that of its neighboring cells. A number of researchers, for example Chen 
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et al. (2006), have suggested filtering out first returns with low elevation 
by using a coarser grid before further interpolation, in order to avoid the 
chance of spike formation. However, this kind of filtering coarsens the 
DSM and thereby reduces the accuracy of individual treetop detection 
without necessarily removing all spikes. Other researchers have tried to 
remove pits from the DSM raster obtained by first-return TIN interpolation 
using raster-based techniques (e.g., Gaussian filter, pit-filling algorithm) 
(Ben-Arie et al., 2009; Brandtberg et al., 2003; Khosravipour et al., 2014; 
Persson et al., 2002; Shamsoddini et al., 2013; Zhao et al., 2013). However, 
the problem with such pit removal methods is that they do not exclusively 
target the sources of pit formation, but alter all pixel values in the DSM. 

Another strategy to overcome the formation of spikes when interpolating 
all first returns is not to interpolate. Some researchers have suggested 
generating a grid of maxima DSMmax where each cell records the highest 
elevation value within a certain neighborhood (Leckie et al., 2003; 
Popescu et al., 2004). They report that compared with a first-return DSM, 
using a DSMmax can minimize pits and improve local maxima detection. 
However, if the chosen neighborhood is too large, the DSMmax will 
overestimate the surface model in accordance with the object properties, 
whereas if the chosen neighborhood is too small, pits will reoccur, 
especially at lower LiDAR point densities (Hollaus et al., 2010). 

To avoid the complications with DSM generation altogether there are 
techniques that directly process the 3D point clouds using volumetric 
approaches (Reitberger et al., 2009b). Furthermore, some researchers have 
indicated that using all of the LiDAR returns can improve the detection 
rate of trees with small diameter at breast height (DBH), which are not 
usually captured by first returns, especially if the canopy is tightly 
interlocked and homogeneous (Li et al., 2012; Lu et al., 2014; Reitberger 
et al., 2009b). However, these newer point cloud-based techniques are 
computationally demanding and have only focused on small areas and may 
not be applicable across a larger range of forest types (Duncanson et al., 
2014). One of these methods is alpha shapes approach. The concept of the 
family of 3D alpha shapes, introduced by Edelsbrunner and Mücke (1994), 
as it results in a concave surface. The alpha shapes approach was recently 
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used for generating geometric canopy structure from LiDAR data 
(Vauhkonen et al., 2015; Vauhkonen et al., 2012b). It is based on a 3D 
Delaunay tetrahedralization of all points and a parameter called alpha (α) 
that is used as a size criterion to determine the level of detail in the final 
result (Delfinado and Edelsbrunner, 1995). 

In this study we describe a novel spike-free algorithm that generates a 
canopy surface at the highest resolution supported by LiDAR in the form 
of a spike-free TIN. The algorithm considers all relevant LiDAR returns 
and systematically prevents the formation of spikes during the TIN 
construction. The resulting spike-free TIN can either be used directly or be 
rasterized onto a grid in order to obtain a pit-free DSM raster. We first 
describe the spike-free algorithm and show results generated by this 
method. We then validate experimentally that using the pit-free DSM 
generated by our algorithm gives statistically significant improvements in 
the accuracy of treetop detection compared to using a first-return DSM. 

4.2 Material 

4.2.1 Study area 
The Bois Noir forest (44° 23′ N, 6° 45′ E) is a part of Barcelonnette basin 
in the southern French Alps. The northern part of the study area is 
characterized by complex topography, with slopes ranging from 10° to 30° 
(Thiery et al., 2007) and the southern part is characterized by extensive 
steep slopes of up to 70° (Razak et al., 2011b). The area is about 1.3 km2 
and the vegetation cover is mainly mountain pine (Pinus uncinata), Scots 
pine (Pinus sylvestris) and a few larch (Larix decidua), Norway spruce 
(Picea abies) trees, mixed with deciduous broadleaved trees such as aspen 
(Populus tremula) and ash (Fraxinus excelsior). 

4.2.2 LiDAR data 
The LiDAR data were acquired during the leaf-on season in July 2009, 
using a helicopter flying about 300 m above the ground (Table 4.1). The 
small-footprint full-waveform airborne laser scanning system (RIEGL 
VQ-480i) utilized by Helimap has been developed specifically for 
mapping mountainous forested area (Vallet and Skaloud, 2004). The 
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system performs on-line full-waveform analysis to extract up to five 
discrete returns from the waveforms. The mean point density was 160 
point/m2 when counting all returns and 116 point/m2 when counting only 
the last returns. 
 
Table 4.1:The airborne laser scanning characteristics. 
Acquisition (month/year) July- 2009 

Laser scanner Riegl VQ480i 

IMU system iMAR FSAS - record 500Hz 

GPS system Topcon legacy - record 5Hz 

Laser pulse repetition rate 300 kHz 

Measurement rate Up to 150 000 s -1 

Laser wavelength Near infrared 

Beam divergence 0.3 mrad 

Laser beam footprint 75 mm at 250 m 

Field of view 60° 

Scanning method Rotating multi-facet mirror 

4.2.3 Field data 
The following field inventory data were collected during September 2011 
and 2012: tree location, tree stem DBH, tree crown diameter (CD) as well 
as tree species (Table 4.2). A Nikon hand-held laser rangefinder was used 
for tree height measurements. However, the treetops could not be seen, due 
to density of the canopy. Therefore, we could not collect accurate tree 
height measurements in the field for validating our high density LiDAR 
dataset. The position of individual trees and the central points of each plot 
were collected using a Leica 1200 Differential GPS and a Total Station. 
The crown diameter was measured with an average of two perpendicular 
directions to more accurately approximate crown diameter of each tree in 
every plot  (Song et al., 2010). The total number of sampled trees was 694. 
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Table 4.2: Descriptive statistics for the tree field measurements. 
 

All 
 (n= 694) 

  
deciduous  

(n= 33) 
  

Larix  
(n= 29) 

  
Pinus 

sylvestris 
(n=325) 

  
Pinus 

uncinata 
(n=307) 

  
DBH 
(cm) 

CD 
(m)  

  
DBH 
(cm) 

CD 
(m)  

  
DBH 

(cm) 

CD 

(m)  
  

DBH 
(cm) 

CD 

(m)  
  

DBH 
(cm) 

CD 

(m)  

Min 7 0.5  13 1.5  13 3.7  8 0.9  7 0.5 

Max 61 9.1  43 6.3  61 8.9  59 9.1  41 6.7 

Median 23 2.6  25 3.8  36 6  25 3.4  20 1.7 

Mean 24.1 3  24.8 3.6  34.9 6.2  26 3.6  20.9 1.9 

SD 8.2 1.6   9.4 1.3   10.5 1.4   8.5 1.4   5.4 0.9 

4.3 Methods 
In this section, we describe a new method for generating a DSM using all 
relevant LiDAR returns. Our algorithm takes a raw point cloud (i.e., 
unclassified) as input and generates a spike-free TIN as output that is then 
rasterized onto a corresponding pit-free DSM at a user-defined resolution. 

4.3.1 Description of spike-free DSM algorithm 
Similar to the standard approach for generating a DSM from LiDAR, our 
algorithm first constructs a TIN that is then rasterized. However, instead 
of using only the first LiDAR returns, our algorithm considers all returns 
in constructing the TIN. This allows all relevant LiDAR returns (e.g. also 
second and third returns) to contribute toward capturing the details of the 
uppermost canopy layer in the DSM. 

The core idea of our algorithm is to preferentially connect LiDAR returns 
into TIN triangles that are nearby not only in x and y, but also in z. After 
all, downward spikes in the TIN are the result of connecting LiDAR 
returns that are close in x and y but very distant in z (Axelsson, 1999). This 
is consistent with Tobler (1970)’s first law of geography: “everything is 
related to everything else, but near things are more related than distant 
things”. Which – applied to our case – suggests that small triangles 
connecting nearby points are more relevant for accurately representing the 
canopy surface than triangles with very long edges. 
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Using all returns, our algorithm constructs a TIN, starting from the highest 
points and using an incremental Delaunay algorithm. It orders the LiDAR 
points by their z coordinate and inserts them into the TIN one by one, in 
order of decreasing elevation (Figure 4.2). At any time the algorithm 
maintains the invariant that the TIN is a Delaunay triangulation, or rather 
a constrained Delaunay triangulation (Chew, 1987) where any edge 
declared “constrained” is allowed to violate the empty-circle criterium of 
the standard Delaunay triangulation. 

After inserting a certain number of points, the algorithm “freezes” all 
triangles whose three edges (in the x/y plane) are each shorter than a certain 
value, called the freeze distance (see Figure 4.2). This is done by 
constraining all three edges of such triangles in the Constrained Delaunay 
TIN. Such frozen triangles are final and will not change when the 
remaining points of lower elevation are inserted into the TIN. Whenever a 
point of lower elevation falls directly onto a frozen triangle it is simply 
ignored and not added to the Constrained Delaunay TIN. This freezing of 
higher-up triangles is what prevents the formation of downward spikes that 
would otherwise turn into “pits” in the rasterized DSM. 

Before our algorithm starts freezing triangles, it needs to insert sufficient 
neighboring LiDAR points into the TIN. Therefore freezing does not start 
until all points have had the opportunity to form triangles with all their 
nearby points in a vertical downward direction (Figure 4.2 (a)). This is 
needed to prevent the freezing mechanism from producing artifacts in the 
TIN that would result from prematurely constraining triangles. Therefore, 
we maintain an insertion buffer to ensure that all triangles that still have a 
point in the buffer will not be frozen. This insertion buffer defines a 
vertical zone of a certain height starting at the elevation of the return that 
was last inserted. 

Hence, our algorithm has two user-definable variables: the length of the 
freeze distance and the height of the insertion buffer. In the following 
section, we describe how to define these variables. 
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Figure 4.2: Sequence of illustrations (a to i) showing the construction of a spike-free TIN 
for an individual tree. The algorithm iteratively inserts all LiDAR returns from top to 
bottom and freezes all small triangles (green triangles) whose three edges are each shorter 
than 0.4 m and whose three points have all left the insertion buffer of 0.5 m. In frame (a) 
the freezing has not started because all points are still in the insertion buffer. 

4.3.1.1 Freeze distance 

To prevent the formation of spikes in the canopy surface, our algorithm 
freezes all triangles whose three edges are each shorter than a user-
specified distance. We choose this distance such that a triangle is frozen 
once it reaches its target size in the sense that its three edges reach their 
expected lengths. The expected edge lengths of a triangle is related to the 
LiDAR Nominal Pulse Spacing (NPS), which expresses the typical or 
average lateral distance (i.e. the horizontal distance in the xy-plane 
between the pulses) between pulses in a LiDAR dataset (Baltsavias, 1999). 
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Typically, the NPS is calculated as the square root of the average area, 
using only one return per pulse (i.e. only the last return or only the first 
return) as a surrogate for pulses (Heidemann, 2012). The NPS expresses 
the expected xy distances between the pulses, using a single swath on flat 
and open terrains for an idealized survey with nadir-only pulses of regular 
distribution. Under such idealized conditions, the NPS is identical to the 
expected length of all edges in a corresponding Delaunay TIN. For a real-
world survey with multiple passes over sloped terrain and dense vegetation 
where the pulse distribution is neither regular nor evenly spaced, the 
average or Aggregate Nominal Pulse Spacing (ANPS) is used (Heidemann, 
2012). The ANPS can be calculated by constructing a Delaunay 
triangulation of the last return of each pulse and by averaging the length 
of all edges, leaving out those associated with points on the convex hull 
(Balsa-Barreiro and Lerma, 2014; Shih and Huang, 2006). 
Our aim is to freeze triangles in higher elevations as soon as their three 
edges have reached their expected length given the pulse spacing. The 
frequency distribution of edge lengths yields a histogram over the range of 
actual pulse spacing within our survey. The 99th percentile of this 
histogram covers the edge lengths we can expect given the actual pulse 
spacing, with the remaining percent corresponding to unusually long edges 
at the boundary or/and across water bodies. For our dataset, this 99th 
percentile is 0.4 m (Figure 4.3). This value was used as the freeze distance. 
We have informally tested this heuristic with other (lower) density LiDAR 
data sets and it yields a reasonable compromise between accuracy and pit 
formation. 
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Figure 4.3: Histogram of edge length of a last-return Delaunay TIN. 

4.3.1.2 Insertion buffer 

The insertion buffer prevents the generation of artifacts in the TIN by 
delaying the freezing process. If the algorithm freezes triangles directly 
after inserting the points that created them (i.e. uses a zero insertion 
buffer), triangles may be frozen before all relevant neighboring returns 
have been inserted into the TIN. This means that freezing would distort the 
structure of TIN everywhere, even in areas without spikes. Moreover, the 
insertion buffer controls the depth of “allowed” spikes by defining a 
vertical zone within which the triangulation remains unconstrained from 
freezing. If the algorithm freezes triangles too late (i.e. uses a too large 
insertion buffer) the TIN could be full of additional spikes, as our 
algorithm considers not just the first but all returns for insertion. In 
particular, many spikes would be generated when two subsequent returns 
from the same pulse (e.g., the first and the second) are triangulated together 
(Figure 4.4). Thus, the buffer size should definitely not be larger than the 
minimum vertical distance between two returns of the same pulse. 

The smallest possible distance between subsequent returns of the same 
pulse depends on the scanning hardware (Gaveau and Hill, 2003). 
According to the manufacturer, the reliable multi-target range for the VQ-
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480i scanner starts at 1.0 m (RIEGL, 2015). We chose an insertion buffer 
size of 0.5 m, which was a reasonable size in view of our experiments. 

We assessed the accuracy of individual tree detection, using the final pit-
free DSM to evaluate our choice of variables for the spike-free algorithm 
(i.e. a freeze distance of 0.4 m and an insertion buffer of 0.5 m) for 
generating a high-resolution DSM. 

 
Figure 4.4: Additional spikes and pits appear in the not-so-spike-free TIN (left) and the 
not-so-pit-free DSM (right) when using a too large insertion buffer of 5.0 m. 

4.3.1.3 Generating a raster-based pit-free DSM 

The pit-free DSM is generated through simple linear interpolation of the 
spike-free TIN (Figure 4.5 (left)) onto a raster (Figure 4.5 (right)). The cell 
size is a key parameter for rasterizing a DSM, especially for accurate 
derivation of treetops (Chen et al., 2006) .  The cell size cannot be bigger 
than half the size of the minimum object of interest (e.g. the tree crown 
size) as Nyquist sampling theory tells us (Nyquist, 1928). It should also 
not be much smaller than the average pulse spacing (Chow and Hodgson, 
2009). We therefore use a grid size of 0.15 m for the pit-free DSM, which 
is sufficient for recognizing the minimum crown diameter of 0.50 m 
recorded in the field and is well supported by our pulse spacing of 0.09 m. 

We used a working prototype of this algorithm, which was implemented 
as part of the LAStools software suite (rapidlasso GmbH, 2015). 
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Figure 4.5: The generated spike-free Delaunay TIN using all relevant returns (left) and 
the corresponding pit-free DSM raster with a resolution of 0.15 m (right). 

4.3.2 Individual tree detection 
Unlike most methods that first height-normalize the DSM before detecting 
treetops, we directly use the pit-free DSM for the treetop detection. The 
normalized DSM (nDSM) – also called Canopy Height Model (CHM) – 
can be generated by subtracting a Digital Terrain Model (DTM) from the 
DSM raster. However, using a CHM to detect treetops results in systematic 
errors when trees are on sloping terrain (Khosravipour et al., 2015), so the 
direct use of a DSM is recommended for extracting treetops from forests 
on topographically complex terrains (Vega et al., 2014). 

For treetop detection, a method based on the morphological opening and 
reconstruction was applied to the DSMs. The morphological opening 
operations (erosion and dilation) with an appropriate structural element are 
well known for separating differently sized objects (Serra, 1982; Vincent, 
1993) and preserving the structure of each object (Wang et al., 2004) in a 
gray-scale imagery. Previous researchers have stated that the structural 
element is set empirically for each case study (Jing et al., 2012b). We 
followed Khosravipour et al. (2015) who used morphological opening for 
identifying treetops in this study area. They found experimentally that a 
flat disk with a diameter of 1.05 m (7 pixels in size) was an appropriate 
structural element for detecting treetops given the minimum object of 
interest (minimum crown diameter is 0.50 m) and the 0.15 m pixel 
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resolution. The purpose of the opening operation is to remove 
“foreground” objects (i.e., treetops) that are smaller than the structural 
element in the DSM raster, and to generate an opened image. Then the 
morphological reconstruction is applied. The previously generated opened 
image is then selected as a marker under the original canopy surface (i.e. 
the original DSM) – which is used as the mask image – in order to retrieve 
the shape of tree crown boundaries that were smoothed by the opening 
operation. The subtraction of the resulting reconstructed image from the 
original DSM gives us the regional maxima image. Finally, for each area 
of the DSM that has a corresponding component in the regional maxima 
image a local maximum is extracted. These local maxima are the estimated 
treetop to which x, y and z coordinates are attributed. 

4.3.2.1 Accuracy assessment of individual tree detection 

The performance of treetop detection was evaluated by comparing the 
detected local maxima with the trees measured in the field. For each tree 
species, if one local maximum had been detected within a reference crown 
boundary, the detection was considered to be correct. If more than one 
local maximum was detected within a reference crown boundary, the 
closest one was considered to be a correctly detected tree, and the others 
were then defined as commission errors. If no local maximum was 
detected, this error was considered as an omission error. Subsequently, the 
overall accuracy of the tree detection was calculated by the Accuracy 
Index (AI) as expressed by Pouliot et al. (2002): 

ሺ%ሻ	ܫܣ ൌ ൣ	ሺ݊ െ ܱ  ሻ൯/݊ሿܥ ൈ 100	 

where n is the number of reference trees in the study area, O is the omission 
error and C is the commission error. 

4.4 Results 
A visual comparison demonstrates that our spike-free algorithm is able to 
produce a high-resolution DSM without pits. Figure 4.6 details a pit-free 
DSM side by side with a standard DSM generated by first-return 
interpolation, with their associated x-axis histograms. The spike-free 
algorithm successfully removed all pits – small dark squares – by 
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constraining the TIN construction to ensure that the only LiDAR returns 
connected in the final triangulation are those that are nearby when hitting 
the canopy at various levels. By observing the original profile, pits are 
clearly visible in the standard DSM generated by a TIN that simply 
interpolates all first returns. Interestingly, the top of the low vegetation 
(Figure 4.6) is well sampled in the pit-free DSM because our algorithm is 
considering all relevant returns when constructing the TIN. However, 
when using only first returns these canopy details are lost in the final DSM. 
In order to evaluate the utility of the pit-free DSM for forest area 
management, the treetop detection method was applied both to the first-
return DSM raster and to our pit-free DSM raster. 

 
Figure 4.6: A visual comparison of the x-axis profile of pit-free DSM derived from the 
spike-free algorithm (left) with that of a standard DSM derived from a first-return 
interpolation (right). The x-axis represent pixel values from the white dashed line in the 
corresponding DSMs. 
 
Figure 4.7 shows an example of correctly detected treetops, omission 
errors and commission errors in the pit-free DSM compared to the first-
return DSM. Table 4.3 presents the number and percentage of correctly 
detected trees, omission, commission errors and the overall AI, assessed 
for different tree species. The results demonstrate that the total accuracy 
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index for tree detection from the pit-free DSM (80.5 percent) is higher than 
that from the first-return DSM (65.7 percent). The chi-square test showed 
a statistically significant difference between the number of correctly 
detected trees in the pit-free DSM (594) and the first-return DSM (482):  
x2 = 51.863, and p = 0.00. When considering the treetop detection accuracy 
across different tree species, the pit-free DSM achieved greater accuracy 
for both deciduous broadleaved and coniferous trees. 

 
Figure 4.7: Visual representation of correctly identified treetops, omission errors, and 
commission errors of the first-return DSM versus the pit-free DSM. 
 
For two deciduous species (Fraxinus excelsior, Populus tremula), the 
detection accuracy was 63.6 percent for the pit-free DSM and 54.5 percent 
for the first-return DSM. The overall accuracy index rate was higher for 
the 29 measured Larix decidua trees. However, there was no significant 
difference in detecting trees for deciduous broadleaved trees (x2 = 2.853, 
and p = 0.10) and Larix decidua (x2 = 1.074, and p = 0.30). For Pinus 
sylvestris and Pinus uncinata, the chi-square test indicated a significant 
difference between the pit-free DSM and the first-return DSM, with the 
pit-free DSM resulting in a higher number of correctly detected Pinus 
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sylvestris trees (x2 = 12.941, and p = 0.00) and Pinus uncinata trees (x2 = 
38.741, and p = 0.00). 

Table 4.3: Tree detection results for the first-return DSM and pit-free DSM. 

Field-measured trees First-return DSM  Pit-free DSM 

number of 
trees 

Species 
Correct   
n (%) 

Omission  
n (%) 

Commission 
n (%) 

AI 
 (%) 

 
Correct   
n (%) 

Omission  
n (%) 

Commission 
n (%) 

AI 
(%) 

33 
Deciduous 
(broadleaved 
trees) 

20 (60.6) 13 (39.4) 2 (6.0) 54.5 26 (78.8) 7 (21.2) 5 (15.1) 63.6 

29 Larix decidua 26 (89.7) 3 (10.3) 7 (24.1) 65.5 28 (96.5) 1 (3.5) 6 (20.6) 75.9 

325 
Pinus 
sylvestris 

240 (73.9) 85 (26.1) 15 (4.6) 69.2 277 (85.2) 48 (14.8) 23 (7.0) 78.2 

307 Pinus uncinata 196 (63.9) 111 (36.1) 2 (0.6) 63.2 263 (85.7) 44 (14.3) 1 (0.3) 85.3 

694 Total 482 (69.5) 212 (30.5) 26 (3.7) 65.7 594 (85.6) 100 (14.4) 35 (5.0) 80.5 

 
The range of DBH values in this study (Table 4.4) allowed us to assess 
how the proposed pit-free DSM algorithm improves the detection of small 
trees by comparison with the first-return DSM derived from first LiDAR 
returns. Based on the DBH distribution (Table 4.2), the range in DBH was 
classified into three classes: DBH less than 20 cm, DBH from 20 – 40 cm 
and DBH greater than 40 cm. A chi-square test demonstrated a statistically 
significant difference between the pit-free DSM and the first-return DSM 
in detecting trees with DBH of less than 20 cm (x2 = 26.237, and p = 0.00) 
and DBH between 20 to 40 cm (x2 = 29.505, and p = 0.00). There is no 
difference between the DSMs in detecting trees with DBH greater than 40 
cm. 

Table 4.4: Proportion of correctly detected trees for three DBH ranges for the first-return 
DSM and the pit-free DSM. 

    All (n= 694) 

Portion of DBH range              
(cm) 

< 20             
(n = 258) 

20 to 40          
(n = 397) 

> 40             
(n = 39) 

First-return DSM  150 (58.1%) 299 (75.3 %) 33 (84.6 %) 

Pit-free DSM 204 (79.0 %) 357 (90.0 %) 33 (84.6 %) 
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4.5 Discussion and conclusions 
This paper focuses on improving the input raster for algorithms that 
perform treetop detection on a 2D canopy surface. Generating such a high-
resolution raster by standard interpolation of only the first returns tends to 
give a poor representation of the canopy structure. Often there are first 
returns with similar x-y coordinates but very different z elevations that are 
scanned from different canopy layers and/or the ground. These first returns 
are vertically above each other and therefore form needle-shaped triangles 
that appear as spikes when interpolated by a Delaunay triangulation. When 
such a TIN is rasterized onto a regular grid the spikes often result in cells 
that are called pits because their value is of abruptly lower elevation than 
that of their neighboring cells. In this study, we propose a novel “spike-
free” algorithm which systematically prevents the formation of spikes 
during the TIN construction. Our method considers all LiDAR returns (e.g. 
also second and third returns) but ignores all those returns whose insertion 
would result in a spike. By considering the contribution of all relevant 
returns, our algorithm can also model details in the canopy structure that 
are also captured by intermediate or last returns. Our experimental analysis 
clearly demonstrated that a DSM generated by the spike-free algorithm 
significantly improves treetop detection.  

We verified experimentally that the freeze distance derived from the actual 
pulse spacing yields the best results in terms of covering all spikes without 
connecting nearby features. If we use a smaller freeze distance, fewer 
triangles are frozen and “spikes” reappear in the canopy surface. This 
increases commission errors in treetop detection, as it becomes more likely 
that individual crowns are fragmented into multiple local maxima. If we 
use a larger freeze distance, triangles are frozen too early and details of the 
morphological structure of the canopy are lost. This increases the omission 
error, as it becomes more likely that neighboring crowns are joined 
together. 

We should point out that a fixed value for the freeze distance will not be 
optimal when the pulse spacing varies locally across the dataset. This may 
happen when merging different numbers of overlapping flight lines, or 
when there are sudden changes in the pitch of the aircraft due to flight 
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turbulence that compress or stretch the spacing of subsequent scan lines. 
Moreover, scanning systems that are based on oscillating mirrors exhibit 
systematic changes in pulse spacing along and across scan lines (Wehr and 
Lohr, 1999). In the future it may be useful to locally adapt the freeze to the 
observed pulse spacing in order to further improve the accuracy of the 
algorithm. 

The insertion buffer prevents the freezing mechanism from generating 
unwanted artifacts in the TIN and controls the depth of “allowed” spikes. 
Although we have confirmed the suitability of a 0.5 m insertion buffer for 
detecting individual trees, its size does affect the results of our algorithm. 
Using a size larger than the minimum distance between subsequent returns 
of the same pulse defeats the whole purpose of freezing and results in 
additional spikes. Using a size smaller than the vertical neighborhood of 
points affects the quality of the TIN as many thin and skinny triangles that 
would usually only exist temporarily become permanently frozen. We 
believe that the ideal buffer lies somewhere between a minimum buffer that 
does not affect TIN quality and a maximum buffer that does not result in 
excessive spikes. In future studies it would be interesting to determine an 
ideal insertion buffer size by testing how different sizes affect the overall 
result for a particular application. 

We investigate the robustness and transferability of the freeze and the 
buffer parameters for other forest types scanned by different LiDAR 
systems in our current research. 

4.5.1 Comparison with prior algorithms 
To our knowledge, this is the first study that has rigorously removed spikes 
from a TIN during the triangulation of raw point clouds for the purpose of 
DSM generation. Most previous “pit-removal” algorithms are pixel-based 
smoothing techniques (e.g. Gaussian, median and mean filtering) that 
operate on the final raster (Chan et al., 2005; Dralle and Rudemo, 1996). 
They usually alter all pixels of the raster by smoothing their values 
according to their neighbors, which often reduces the accuracy of tree top 
detection by increasing the omission error (Solberg et al., 2006). 
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The only comparable method is the pit-free CHM algorithm developed by 
Khosravipour et al. (2014) that also avoids smoothing. It generates a stack 
of CHMs that are partially pit-free – each representing a different height 
interval of the canopy – and which are then merged in a final step into a 
pit-free CHM. The main similarity is the “rasterization threshold” that tries 
to ensure that only triangles connecting first returns from the same tree 
crown are rasterized, which is basically identical to the freeze distance we 
use here. However, there are five main differences: 

(1) The pit-free CHM algorithm is impractical for generating pit-free 
DSM rasters due to the excessive number of partial DSM that would 
be required – especially for steep terrains. Our new spike-free 
algorithm does not require partial rasters. 

(2) The pit-free CHM algorithm controls the depths of pits via a set of 
“height thresholds”, and reducing their spacing increases the number 
of partial CHMs. Our new spike-free algorithm controls the depths via 
the “insertion buffer” instead. 

(3) The pit-free CHM algorithm rasters all triangles below the 
“rasterization threshold”, no matter how poorly shaped. Our new 
spike-free algorithm uses an “insertion buffer” to ensure all nearby 
points arrive before triangles are frozen. 

(4) The pit-free CHM algorithm used only the first returns, potentially 
missing canopy details captured by second, third, or fourth returns. 
Our new spike-free algorithm chooses the most relevant from all 
returns. 

(5) The pit-free CHM algorithm can only output a pit-free raster as the 
final result. Our new spike-free algorithm can output both, a spike-free 
TIN and a pit-free raster. 

Our spike-free algorithm has similarities with the alpha shape approach. 
This technique entails removing each simplex – a tetrahedron – of their 3D 
Delaunay tetrahedralization whose (empty) circumscribing sphere has a 
squared radius larger than the α-shape value (Edelsbrunner and Mücke, 
1994). The final alpha shape is the boundary enclosing all remaining 
tetrahedral; it can be concave and even disconnected (i.e., one or multiple 
surface components of any genus). In contrast, our algorithm neither 
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inserts all points (i.e. those falling on frozen triangles are ignored) nor 
removes any simplices – here triangles – from our Constrained 2D 
Delaunay triangulation (but it freezes triangles whose edges are smaller 
than the freeze distance). The final result of our spike-free algorithm is a 
triangulation that is equivalent to a planar graph – a single connected 
surface with a genus of zero. 

4.5.2 Comparison with prior results 
Previous studies have reported treetop detection accuracy in the range of 
40% to 70% for a first-return DSM raster (Persson et al., 2002; Pitkänen 
et al., 2004; Yu et al., 2011) but with less than 20% accuracy for 
intermediate and small trees (Kaartinen et al., 2012). Our experiments 
demonstrated that a significant improvement in treetop detection using the 
pit-free DSM (80% accuracy) compared to the first-return DSM (65% 
accuracy). Our experiments further improve on the result of Khosravipour 
et al. (2014), which have used a pit-free CHM. They reported accuracies 
from 50% to 70% in deciduous and coniferous trees, while our results 
provided tree detection rates ranging from 60% to 80% for deciduous and 
coniferous trees and 80% to 90% accuracy for detecting small trees with 
DBH of less than 20 cm and 40 cm. 

Our findings appear to be in the range of values reported by techniques 
operating directly on the 3D point clouds, with detection rates varying 
from 70% to 90% (Li et al., 2012; Lu et al., 2014; Reitberger et al., 2009a; 
Vega et al., 2014). This means our novel DSM generation method is 
capable not only of significantly improving treetop detection, but also of 
competing with significantly more complex 3D point cloud techniques that 
require much more computation power. Our algorithm may prove to be a 
more practical method for treetop detection at the local or regional scale. 

4.5.3 other opportunities 
The spike-free algorithm offers the possibility of improving the extraction 
of other tree crown component characteristics critical to forest 
management, such as the length of the green crown and crown diameters. 
It yields a DSM at the highest resolution supported by the LiDAR density, 
while keeping the most relevant of all returns, which has the potential to 
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capture more details about the canopy structure. It may also prove useful 
for improving the estimation accuracy for tree heights, and subsequent 
biophysical parameters such as biomass and carbon. 

The spike-free algorithm was originally developed solely for application 
in forestry. However, initial experiments show that it also gives noticeable 
improvements when applied to LiDAR from urban scenes, especially 
along building edges. Any feature that an off-nadir pulse can “peek” under, 
such as eaves of roofs, covered walkways, or bridges, results in excessive 
spikes in a first-return DSM and significant distortions in the 
corresponding raster. In all such cases, our spike-free algorithm can 
produce a cleaner surface with better-defined edges (see Figure 4.8). This 
could prove useful for automated reconstruction of building outlines from 
DSMs. 

We should point out that the DSM produced by the spike-free algorithm 
may not necessarily be better for all applications. For example, when 
computing a hill-shading for visualization purposes it seems that excessive 
aliasing in the shaded image due to spikes in the first-return DSM result 
makes it easier to visually discern individual trees in an urban scene or 
distinguish certain types of vegetation. 
 

Figure 4.8: A visual comparison of a first-return TIN (a) and spike-free TIN (b) for an 
urban area. The data is courtesy of the open-access for Canton Zurich in Switzerland.  
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Chapter 5  
 
Comparative testing and evaluation of LiDAR-
derived spike-free digital surface models for 
individual tree detection across multiple 
forest ecosystems* 
  

                                          
* This chapter is based on: 
Khosravipour, A., Skidmore, A.K., Isenburg, M., Hussin, Y.A., Jones, S.D., Heurich, M., 
Bradford, M.,  2016. Comparative testing and evaluation of LiDAR-derived spike-free 
digital surface models for individual tree detection across multiple forest ecosystems. 
resubmitted: Agricultural and Forest Meteorology. 
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Abstract 
A main challenge, when using LiDAR data to detect individual trees, is 
the strong effect the method used to derive the Digital Surface Model 
(DSM) from the LiDAR data can have on the accuracy. Commonly used 
methods that interpolate first, highest, or last LiDAR returns often struggle 
to produce a reliable representation of canopy surface. The recently 
developed spike-free algorithm, however, considers all LiDAR returns, but 
only uses those it deems relevant for generating the DSM raster. In this 
study, we evaluate the impact of both forest complexity and number of 
LiDAR pulse density on the performance of the spike-free algorithm for 
detecting individual treetop using LiDAR data. We also compared the 
accuracy of treetop detection achieved with a spike-free DSM to the 
accuracies achieved with DSMs generated from first, highest and last 
returns. Three different case studies, with three different real-work LiDAR 
pulse densities and two thinned datasets, were selected in order to evaluate 
the performance of spike-free free DSM: a temperate plantation in France 
(116 LiDAR pulse/m2 and a thinned dataset of 5 pulse/m2), temperate 
mixed deciduous-coniferous forest in Germany (16 LiDAR pulse/m2 and 
a thinned dataset of 5 pulse/m2) and a tropical rainforest in Australia (5 
LiDAR pulse/m2). The results show that the spike-free algorithm improved 
the accuracy of treetop detection across multiple forest types and LiDAR 
of different pulse densities. The map accuracy is affected by both the 
LiDAR pulse density and forest complexity. After normalizing datasets to 
an equal LiDAR density,  the highest accuracy based on the spike-free 
algorithm was obtained within the Bois Noir forest in France, a coniferous 
plantation. The lowest detection result was obtained at Robson Creek in 
Australia, a mix of multi-layered broad-leaved schlerophyllous trees. 
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5.1 Introduction 
Forests are three-dimensional (3D) systems that have a significant impact 
on ecosystem function and structure, and figure prominently in any 
discussion of terrestrial essential biodiversity variables (EBVs) (Pettorelli 
et al., 2016; Skidmore et al., 2015). Accurate measurement and monitoring 
of forest structural parameters are increasingly needed across multiple 
ecosystems and spatial scales to support a variety of activities related to 
sustainable forest management, biomass/carbon estimation and 
understanding the impacts of natural and anthropogenic influences on 
biodiversity (Rosenqvist et al., 2003; Wu et al., 2016; Wulder et al., 2012). 
Forest tree structure can be described by various attributes, such as tree 
position, tree height, crown size, as well as species that are closely linked 
with ecosystem function (Palace et al., 2015; Spies, 1998). Small-footprint 
airborne Light Detection and Ranging (LiDAR) systems offer an efficient 
remote sensing technique for acquiring forest structural variables capable 
of providing detailed and accurate 3D information (Lim et al., 2003b). The 
advantages of LiDAR-based forest inventory have been detailed for a wide 
variety of forest ecosystems worldwide, ranging from boreal (Hyyppä et 
al., 2008; Vastaranta et al., 2011) to temperate (Amiri et al., 2016; Latifi 
et al., 2015) and tropical ecosystems (Asner and Mascaro, 2014; Ferraz et 
al., 2016). 

As a basic unit for identifying forest variables, the individual tree detection 
approach (including treetop detection and crown delineation) has attracted 
much attention in the LiDAR research community (Brandtberg et al., 
2003; Koch et al., 2006; Leckie et al., 2003; Li et al., 2012; Mongus and 
Žalik, 2015; Pitkänen et al., 2004). Numerous individual tree detection 
approaches utilizing LiDAR data, have been developed in the past, such as 
Region Growing (Hyyppä et al., 2001), Watershed (Chen et al., 2006) and 
Normalized Cut (Yao et al., 2012). What the most popular  individual tree 
detection approaches have in common is that they first identify local 
maxima that correspond to the positions of treetops (Duncanson et al., 
2014; Mongus and Žalik, 2015; Vastaranta et al., 2011; Véga and Durrieu, 
2011; Zhang et al., 2014). Trees are typically detected using a search radius 
(i.e., window size) that moves systematically across either the original 
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LiDAR raw data point clouds (Ferraz et al., 2012; Li et al., 2012; Lu et al., 
2014; Reitberger et al., 2009b; Yao et al., 2012) or the LiDAR-derived 
DSM raster  –  or a normalized DSM (nDSM) also known as Canopy 
Height Model (CHM) (Chen et al., 2006; Duncanson et al., 2014; Heurich, 
2008; Jing et al., 2012a; Wu et al., 2016). The LiDAR-detected local 
maxima are later used as reference points (or seed points) for crown 
segmentation and height estimation (Monnet et al., 2010; Popescu and 
Wynne, 2004; Véga and Durrieu, 2011; Zhang et al., 2014). 

The main challenges faced in local maxima detection are omission errors 
(missed trees) and commission errors (falsely detected trees). It is claimed 
that these errors mainly rely on the quality of acquired LiDAR data, the 
data processing and the forest complexity (Eysn et al., 2015; Kaartinen et 
al., 2012; Vauhkonen et al., 2012a; Zhen et al., 2016). For example, 
augmenting the density of laser pulse footprints increases the chance of the 
laser sampling the “true” treetop, irrespective of whether the approaches 
are based on a raster DSM or the point cloud (Chen et al., 2006; Lefsky et 
al., 2002; Li et al., 2012; White et al., 2016). To reduce omission and 
commission errors, an efficient local maxima technique is required – in 
others words, an appropriate window size for the particular crown size – 
enhances treetop detection by reducing omission and commission errors 
(Kathuria et al., 2016; Wulder et al., 2000). However, a major shortcoming 
of treetop detection approaches is that accuracy is largely dependent upon 
the structural complexity of forest structure (Falkowski et al., 2008). High 
accuracy of treetop detection is normally achieved in open canopy, 
whereas comparatively lower accuracy is achieved in closed multilayer 
stands (Mongus and Žalik, 2015; Reitberger et al., 2009b; Vauhkonen et 
al., 2012a). This is due to the fact that trees growing closely together often 
have overlapping or interlocking crowns, making it difficult to distinguish 
trees (Falkowski et al., 2008; Heurich, 2008). Although numerous previous 
studies have highlighted this drawback, few studies directly evaluated how 
increasing forest complexity influences the accuracy of treetop detection 
using LiDAR data (Vauhkonen et al., 2012a). 

Another potential source of error in treetop detection, when using the local 
maxima, is formed by the methods used to generate the DSM. There are 
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two ways to use a DSM for tree detection: as a raster image interpolated 
from LiDAR points depicting the uppermost layer of the canopy, or as a 
point cloud. The major advantage of using the point cloud DSM is that all 
LiDAR returns can be used so that no information is omitted (Duncanson 
et al., 2014). However, the point cloud-based tree detection techniques are 
computationally demanding and limited to small areas, and therefore may 
not be applicable across a larger range of forest types (Duncanson et al., 
2014; Hu et al., 2014; Mongus and Žalik, 2015; Wu et al., 2016). A 
literature review study conducted by Zhen et al. (2016) has reported that 
66 % of  tree detection approaches are based on using raster DSMs, 20% 
of the methods are based on LiDAR point cloud, and the remainder are 
based on combining raster, point cloud and a priori information. 

Previous studies have suggested different techniques to generate a raster 
DSM. For almost two decades, the most popular way to generate a DSM 
is to interpolate all first LiDAR returns – often via Delaunay triangulation 
into a Triangulated Irregular Network (TIN) (Axelsson, 1999; 
Khosravipour et al., 2015; Van Leeuwen et al., 2010; Wu et al., 2016). The 
reason goes back to 1980s when the earlier small-footprint LiDAR systems 
were only able to record the distance from the plane to the forest canopy 
or the distance from the plane to the ground for each pulse (Maclean and 
Martin, 1984; Nelson et al., 1984). The first return of each pulse always 
captured the uppermost portion of a forest canopy profile (Nelson et al., 
1988). Although over the past decade there have been dramatic 
improvements in LiDAR technologies to record a higher number of 
discrete laser returns for each pulse (e.g., up to five or more returns), first 
returns are still popular when calculating the LiDAR-derived DSMs 
(Hyyppä et al., 2008; Kathuria et al., 2016; Lim et al., 2003b; Solberg et 
al., 2006). Nevertheless, any two-dimensional (2D) interpolation of first 
returns struggles to produce a realistic representation of the canopy surface 
when there are first returns that have very similar x-y coordinates but very 
different z values (Axelsson, 1999). When triangulated into a TIN, such 
variations will form needle-shaped triangles that appear as spikes and 
result in pixels with unnaturally low values called “pits” when the TIN is 
rasterized (Khosravipour et al., 2016). These geometric irregularities often 
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turn the first-return DSM or raster into extremely jagged surfaces, which 
subsequently reduce the accuracy of treetop detection wherever local 
maxima methods are used (increasing omission and commission errors) 
(Ben-Arie et al., 2009; Khosravipour et al., 2014; Persson et al., 2002). 
Previous studies have reported treetop detection accuracy, based on first-
return DSMs, to be in the range of 40–70% for different forest complexity 
(Pitkänen et al., 2004; Yu et al., 2011) and even below 20% for 
intermediate and small trees (Kaartinen et al., 2012; Kathuria et al., 2016). 

A number of researchers use the benefit of other laser returns by generating 
a regular grid with each cell recording the maximum laser elevation value 
within a defined neighborhood of cells (Chen et al., 2006; Holmgren and 
Persson, 2004; Persson et al., 2002; Popescu, 2007). The assumption here 
is that in a DSM, the highest value, of any returns, will correspond to the 
treetop as detected by the local maxima. Researchers have reported that, 
compared to a first-return DSM, a highest-return DSM using local maxim 
does improve treetop detection essentially by removing irrelevant first 
returns with a lower z coordinate that do not represent actual treetops 
(Chen et al., 2006; Zhen et al., 2016). However, if the chosen 
neighborhood is too large, the highest-return DSM will overestimate the 
surface model; and if the chosen neighborhood is too small, empty pixels 
as well as data pits will appear, especially at lower LiDAR pulse densities 
(Hollaus et al., 2010; Khosravipour et al., 2016). After a while, Hyyppä et 
al. (2012) suggest interpolating DSMs using the last return instead of the 
first or highest return of each pulse, in order to overcome the limitations 
of the first-return and the highest-return methods in detecting small tree 
position in complex forests where trees are tightly interlocked. This 
approach exploits the capability of the small-footprint airborne laser 
scanner to deeply penetrate between canopy branches and foliage before 
producing the last return. When trees overlap, the surface model based on 
last-return DSMs results in a drop in elevation that can be used for 
separating individual trees. 

Recently, Khosravipour et al. (2016) developed the spike-free algorithm 
for generating higher accuracy DSM rasters for treetop detection. This 
technique retains the simplicity of raster DSM methods but incorporates 
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more of the 3D information from the raw point clouds when generating the 
interpolated surface. The algorithm considers all raw LiDAR returns (i.e., 
first, second, third, … to last) and systematically prevents the formation of 
spikes during TIN construction by selectively ignoring those returns that 
would result in a spike if inserted. Khosravipour et al. (2016) reported that 
a spike-free DSM significantly improves the accuracy of treetop detection 
due to its potential to capture more details about the canopy structure 
which are not usually captured by first-return DSMs. However, to date this 
has only been tested in a coniferous plantation forest and only compared 
with a first-return DSM on a LiDAR point cloud with very high pulse 
density. Therefore, the performance of the spike-free algorithm still 
unknown for different forest types and LiDAR pulse densities in compare 
with other previous DSM generation techniques. 

The aim of this study is to assess the accuracy of treetop detection using a 
DSM generated with the spike-free algorithm for different types of forest. 
The specific objectives of this study are: (a) to evaluate the applicability 
of spike-free DSMs at different LiDAR pulse densities, and (b) to 
statistically compare the accuracy of treetop detection achieved with a 
spike-free DSM to the accuracies achieved with DSMs generated from 
first-return, highest-return, and last-return LiDAR pulse. 

5.2 Materials 

5.2.1 Study area and data acquisition 
Three different case study areas were selected each with different LiDAR 
pulse densities, to pursue our objectives covering diverse forest 
environments. Test site 1 is a temperate plantation forest (Bois Noir, 
France), test site 2 is a temperate mixed deciduous-coniferous forest 
(Bavarian Forest National Park, Germany), and test site 3 is a tropical 
rainforest (Robson Creek, Australia). These three areas are surveyed by 
115.85 pulse/m2, 16.37 pulse/m2 and 4.63 pulse/m2, respectively. In the 
following sections, we describe the characteristics of these case studies and 
their acquired LiDAR data in more detail. 
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5.2.1.1 Test site #1 

The Bois Noir (black wood) forest is part of the Barcelonnette basin, which 
is situated in the southern French Alps (44° 23´ N, 6° 45´ E) in the dry 
intra-Alpine zone, and is characterized by a temperate, Mediterranean 
climate (annual rainfall 400 - 1400 mm and a mean annual temperature of 
7.5ºC) (Flageollet et al., 1999).  In the 19th century reforestation was started 
in the area, enforced by local laws (Arnaud, 1895). The Bois Noir 
catchment is located on the north-facing slope of the basin with the 
elevation ranging from 1,400 to 2,380 m above sea level. The catchment 
is characterized by irregular rugged topography with slope gradients of 10° 
to 70° (Thiery et al., 2007). The study area is 1.3 km2 in size and 
predominantly comprises mountain pine (Pinus uncinata) and Scots pine 
(Pinus sylvestris), plus a few larch (Larix decidua) and an occasional 
deciduous tree (Populus tremula and Fraxinus excelsior). 

The field data, which were collected during September 2011 (seven plots) 
and September 2012 (48 plots), include, tree location and tree stem DBH. 
Within each plot the DBH of all trees with in diameter larger than 7.0 cm 
at 1.3 m above the ground was measured using a 60 cm caliper. The 
position of the individual trees and the center of each plot were recorded 
using the Leica 1200 Differential GPS System and a total station (see 
Khosravipour et al. (2014) for more details). In total, 694 trees were 
measured. 

LiDAR data acquisition flights were performed in July 2009. The small 
footprint full-waveform LiDAR system (RIEGL VQ-480i) utilized by 
Helimap has been developed specifically for mapping mountainous 
forested areas (Vallet and Skaloud, 2004). The system was operated at a 
laser pulse repetition rate of 300-kHz and a scan width of 60° and 
performed on-line full-waveform analysis to extract up to five discrete 
returns for each pulse. The survey was flown 250 m above ground level, 
resulting in a mean footprint diameter of 75 mm on the ground. In order to 
increase the laser pulse density, the area was covered by seven overlapping 
flight lines. On average, the pulse density computed from last returns was 
115.95 pulse/m2 and the point density of all returns 164.43 points/m2. 
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5.2.1.2 Test site #2 

This study area is part of the Bavarian Forest National Park, which is 
located in south-eastern Germany along the border with the Czech 
Republic (49° 4´ N, 13° 17´ E). The forest is in a  temperate region 
featuring a cool (mean annual temperature 3 - 6.5°C) and humid 
(precipitation 1200 - 1850 mm) climate with heavy and long-lasting snow 
cover in the higher elevations. The area is dominated by rough terrain with 
the elevation ranging from 600 to 1,453 m above sea level (Heurich et al., 
2010). The area mainly encompasses three major forest communities, 
namely sub-alpine forests dominated by Norway spruce (Picea abies) 
interspersed with a few Mountain ash (Sorbus aucuparia); mountain 
mixed forests dominated by a mixture of Norway spruce, Silver fir (Abies 
alba), European beech (Fagus sylvatica), Norway maple (Acer 
platanoides) and Sycamore maple (Acer pseudoplatanus); and alluvial 
spruce forests comprised of Norway spruce, Mountain ash, and Birches 
(Betula pendula and Betula subescens) (Cailleret et al., 2014). In the past 
few years, the forest has hosted several remote sensing-based studies (i.e., 
LiDAR-based), due to the availability of the field database and feasibility 
of using various remote sensing systems (Amiri et al., 2016; Heurich and 
Thoma, 2008; Reitberger et al., 2009b; Yao et al., 2012). 

We used field data sets collected for previous research, including Heurich 
(2008), Yao et al. (2012), and Latifi et al. (2015). For this research 15 
sample plots with sizes of between 20 m × 50 m and 50 m × 50 m were 
selected. The position of each plot and its living trees was precisely 
measured twice with a Differential GPS System using the post-processing 
routine. The residual error was less than 5.0 cm (Heurich, 2008). The 
parameters such as DBH and tree species were collected for all 746 
European beech (Fagus sylvatica), 579 Norway spruce (Picea abies), 12 
silver fir (Abies alba), 12 Sycamore maple (Acer pseudoplatanus), 4 
Mountain ash (Sorbus aucuparia) and 2 Norway maple (Acer 
Platanoides). The total number of measured trees was 1355. 

Full-waveform LiDAR data were available for the entire national park 
(Latifi et al., 2015), having been collected by Milan Flug GmbH with Riegl 
LMS-Q680i sensor in three days during July 2012. The survey was flown 
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650 m above ground level, resulting in a footprint diameter of 32 cm on 
the ground. The scanning frequency was set to 350-KHz with a scan angle 
of ± 60° and up to six discrete returns were extracted for each pulse. On 
average, the pulse density computed from last returns was 16.37 pulse/m2 
and the point density of all returns 33.05 points/m2. 

5.2.1.3 Test site #3 

The third case study is located at Robson Creek (17° 7´ S, 145° 37´ E) in 
Danbulla National Park, which lies within the Wet Tropics World Heritage 
Area of Queensland, Australia. The forest is representative of upland (400-
1000 m) rainforest, boasting highest rates of biodiversity in Australia 
(Woodgate et al., 2015) and amongst the highest above ground biomass 
per hectare in the world (Bradford et al., 2014; Murphy et al., 2013). The 
area consists of  complex mesophyll and notophyll vine forest on granite 
and meta-sediment alluvium (Bradford et al., 2014). The climate in the 
area is considered seasonal with 61% of the annual rainfall occurring in 
the months January to March (TERN, 2015). The mean annual rainfall is 
approximately 2300 mm and the mean annual temperature 19 C° 
(Woodgate et al., 2012). 

The site is locally managed by CSIRO Tropical Forest Research and 
overseen by James Cook University. The fieldwork and LiDAR data 
collection was carried out by AusCover field and airborne data collection 
campaigns of The Australian Terrestrial Ecosystem Research Network 
(TERN, 2013) between December 2009 and November 2012. All stems of 
a sample plot with of  500 m × 500 m were identified, mapped, the species 
noted, and the DBH measured (see Bradford et al. (2014) for more detail). 
The initial survey of all stems with a DBH ≥ 10 cm recorded 23,416 stems 
covering 208 species in 128 genera and 53 families, Lauraceae, Rutaceae, 
Proteacea, Elaeocarpaceae, and Atherspermataceae dominated the list. For 
this research, however, random sampling determined the position of a 
central 40 circular subplots (r = 12.6 m) within the initial 25-ha plot. The 
number of measured trees thus selected was 1711. 

Small-footprint full-waveform LiDAR data were acquired in September 
2012 over the 25-ha original study site at Robson Creek using a Riegl 
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LMS-Q560 laser scanner. The provided full-waveform data was 
subsequently decomposed using Gaussian pulse estimation (Riegl, 2006), 
which resulted in six returns identified per out going pulse (Wilkes et al., 
2015). The flying height was 500 m above the ground, yielding an 
individual return footprint of approximately 20 cm in diameter. This 
LiDAR dataset consists of five different flight lines with drastically 
varying pulse densities. Four of the five flight lines have a low density of 
2.03 pulse/m2 and 2.74 points/m2. The one very high density flight line that 
crosses the surveyed area has a density of 6.67 pulse/m2 and 10.13 
points/m2.. However,  on average, the pulse density computed from last 
returns of all flight lines in this dataset was 5 pulse/m2 and the point density 
of all returns 6.71 points/m2. 

5.3 Methods 
Four LiDAR-derived DSM generation techniques are compared in this 
study, namely interpolation of first returns, of highest returns, of last 
returns, and of all relevant returns (i.e., spike-free). The input LiDAR point 
clouds included all returns (i.e., ground and non-ground) with UTM 
projected x-y coordinates, ellipsoidal elevation for the z coordinates, and a 
return numbering to distinguish first from last returns. The pre-processing 
into DSM rasters was implemented using the LAStools software suite 
(rapidlasso GmbH, 2016). The output DSM rasters were used as input to a 
tree detection algorithm that extracted treetop positions with the local 
maxima approach. The accuracy of the treetop detection was assessed by 
tree species and by stem diameter (DBH) for each test site using the field 
data. 

5.3.1 LiDAR data processing 
The original LiDAR data were stored as tile datasets per project. Besides 
using the original datasets, we artificially thinned both the original high 
LiDAR pulse density datasets (Bois Noir forest and Bavarian Forest 
National Park LiDAR datasets) down to 5.00 pulse/m2, in order to directly 
evaluate how increasing forest complexity impacts on the performance of 
the spike-free algorithm. Unlike other methods that typically create a 
thinned LiDAR dataset by keeping only every nth return along the time 
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line, we simulated lower densities by either keeping all returns of a pulse 
or by removing all returns of a pulse using their GPS timestamp. 

However, we should point out that thinning a LiDAR dataset does not 
exactly simulate a real LiDAR survey. The diameter of the laser beam on 
the canopy increases with the altitude of the aircraft’s flight path due to 
beam divergence of the laser (Khosravipour et al., 2014; Lim et al., 2008). 
In an actual survey of lower density LiDAR, fewer laser pulses would 
sample the ground, each with a wider footprint and thus more likely to 
interact with the canopy higher-up (Hall et al., 2009). 

5.3.2 Generating raster DSMs 
To generate the first-return and last-return DSM raster, only all first returns 
and last returns, respectively, were interpolated through Delaunay 
triangulation. The resulting triangulations were then rasterized onto a grid 
with the respective cell size. To generate the highest-return DSM raster, 
only the highest return within the defined grid cell was used. The resulting 
subset of returns was again interpolated through Delaunay triangulation, 
and then rasterized onto a grid with the respective cell size. 

The spike-free algorithm, developed by Khosravipour et al. (2016), was 
used for generating the spike-free DSM raster. This algorithm considers 
all returns (i.e., first, second, third, … to last) arranged from highest to 
lowest elevation for insertion into a Constrained Delaunay TIN. However, 
it only inserts those returns into the TIN that it deems “relevant”. There 
are two user-defined parameters that affect which returns are inserted: (a) 
freeze distance and (b) the insertion buffer. Freeze distance prevents the 
formation of spikes in the incrementally constructed Constrained 
Delaunay TIN by “freezing” triangles with three edges shorter than this 
specified distance and by ignoring returns that fall onto “frozen triangle”. 
The insertion buffer prevents the generating of artifacts due to premature 
freezing of triangles during the TIN construction by delaying the freezing 
process. The freeze distance is defined based on the 99th percentile of the 
frequency of triangles’ edge lengths, which captures the range of actual 
pulse spacing within the surveyed area. Therefore, the calculated freeze 
distances are 0.45 m, 0.70 m and 1.60 m ,respectively, for the Bois Noir 
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forest, Bavarian Forest National Park and Robson Creek LiDAR data sets. 
For the thinned datasets, the freeze size of 1.35 and 1.25 m were 
determined for the Bois Noir forest and Bavarian Forest National Park, 
respectively. The insertion buffer should not be larger than the minimum 
vertical distance between two returns of the same pulse. The smallest 
possible distance between subsequent returns was defined based on the 
scanning hardware. For this research, we chose an insertion buffer size of 
0.5 m, which is a reasonable size for Riegl scanners (Khosravipour et al., 
2016). The algorithm results in a spike-free TIN that interpolates all 
relevant returns, and is rasterized onto a grid with the respective cell size. 

The cell size for the DSM rasters should not be much smaller than the 
mean LiDAR pulse spacing (Chow and Hodgson, 2009). This cell size 
determines the smallest detectable object (i.g., a tree) as expressed by the 
Nyquist sampling theory (i.e., the minimum object of interest cannot be 
smaller than two cells) (Nygren et al., 1993). We selected a cell size within 
a 0.15 m spatial resolution (and 0.25 m for the thinned datasets) for the 
Bois Noir forest and Bavarian Forest National Park LiDAR data sets; and 
a 0.25 m spatial resolution for Robson Creek based on their LiDAR pulse 
spacing. 

5.3.3 Individual tree detection 
A method based on morphological opening and reconstruction was applied 
to all four generated DSMs. Morphological opening is a well-known 
image-processing method for separating different objects (Vincent, 1993), 
while preserving their structure  in images (Wang et al., 2004). 
Morphological opening is achieved by two sequential moving window 
operations (i.e., erosion and dilation) with  the Structural Element (SE) as 
a template (Serra, 1982). The shape and size of the structural element are 
commonly based on the shape and size of the object of interest (for 
example, a disk shape for tree crown objects). However, if the selected SE 
is too large, more parts of the crowns will be removed, while if the SE 
selected is too small, some branches might be mistaken for individual 
trees. The efficient approach is to set this parameter empirically for each 
local area, in order to deal with the natural variations in crown size (Jing 
et al., 2012b). We found empirically that a combination of flat disks with 
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a diameter of 5 and 7 pixels in size provided appropriate structural 
elements for detecting treetops with the natural variation in crown size in 
our case studies. The opening operations removed foreground objects (i.e., 
treetops) that were smaller than the defined SE in the DSM raster. The 
output was an opened image. Next, the morphological reconstruction, an 
efficient method for extracting regional maxima (Vincent, 1993), was 
implemented. To extract the regional maxima, the morphological 
reconstruction method selected the previously generated opened image as 
a marker and selected the original DSM image as a mask image in order to 
retrieve the shape of tree crown boundaries. The result is a reconstructed 
image. Subsequently, the reconstructed image was subtracted from the 
original DSM in order to isolate the regional maxima that had been 
removed by the opening operation as foreground objects. Finally, the local 
maxima of each regional maxima component were extracted from the 
image. These local maxima form the estimated treetop points (x, y and z). 

5.3.3.1 Accuracy assessment of individual tree detection 

An evaluation of the accuracy of treetop detection was carried out by 
calculating the Kappa coefficient (Cohen, 1960) using an error matrix. 
Accuracy assessment was done by associating the detected local maxima 
(laser measured trees) with the actual field measured trees within a defined 
tree radius boundary. Each of the local maxima was associated with the 
closest field measured tree within a radius of 60% of the mean distance 
(i.e., the distance from each tree to its closest neighbor divided by the 
number of trees in each plot) (Heurich, 2008). If more than one local 
maximum was detected within the boundary, the closest one was 
considered to be a correctly detected tree, and the others were then defined 
as commission errors. If at the end of the process there were field measured 
trees without an associated local maximum, these trees were considered to 
be omission errors. 

In order to create the error matrix, we converted the local maxima 
information into a classified grid raster representing four classes inside the 
defined tree boundaries (Figure 1). The cells that correspond correctly to 
LiDAR-detected trees (i.e. treetops) were classified as True Positive (TP);  
the cells that correspond to falsely detected trees (i.e. commission errors) 
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were classified as False Positive (FP); the cells that correspond to omission 
errors were classified as False Negative (FN); and the remaining cells, 
those correctly not assigned to any local maxima, were considered to be 
True Negative (TN). In order to avoid an overestimation of TN, the cell 
size of the classified grid was selected based on the average radius 
boundary in each case study. 

 
Figure 5.1: Visual representation of the classified grid, illustrating correctly detected 
trees, omission errors, and commission errors of the DSM generated by the spike-free 
DSM (Bois Noir, France). 
 
Once Cohen’s Kappa is calculated, the pairwise comparison of the  Z-
statistic test (Congalton and Green, 1999) was performed to determine if 
the error matrix of the spike-free method is significantly different from the 
other methods. The Z-statistic test for testing if two independent error 
matrices are significantly different is expressed by: 

ܼ ൌ
หܭௌி െ ிหܭ

ටݎܽݒෞ ൫ܭௌி൯ 	ݎܽݒෞ ൫ܭி൯
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where ܭௌி and ܭி	denote the estimates of the Kappa statistic for the error 
matrix of the spike-free method and the first-return method, respectively; 

and ݎܽݒෞ ൫ܭௌி൯ and ݎܽݒෞ ൫ܭி൯	are the corresponding estimates of the 

variance as computed from the appropriate equations proposed by Fleiss 

et al. (1969). Given the null hypothesis ܪ:	ܭௌி െ ிܭ ൌ 0, the alternative 

ௌிܭ	:ଵܪ െ ிܭ ് 0 is rejected if Z ≥ ݖ/ଶ (e.g. at the 99% confidence 

interval the value is 2.575). Note that ܭி	may be replaced by estimates of 
the Kappa statistic of the other methods. 

Based on the DBH distribution at each site, the range of DBH was 
classified into three classes: DBH less than 20 cm, DBH from 20 to 40 cm, 
and DBH greater than 40 cm. This allowed us to assess and compare the 
accuracy of the detection of various ranges of DBH using the four DSM 
generating methods. 

5.4 Results 
The number of extracted individual tree species, the Kappa (K) and the Z-
Statistic values for the Bois Noir forest, the Bavarian Forest National Park 
and for Robson Creek, using different LiDAR-derived DSMs, are shown 
in Table 5.1 to 5.6. The Kappa coefficients ranging from 0.28 to 0.85 were 
obtained. The highest accuracy (Kappa = 0.85) was obtained using the 
spike-free algorithm within the Bois Noir forest (France), while the lowest 
accuracy (Kappa = 0.28) was obtained using the highest-return DSM 
generation method within Robson Creek (Australia). For both coniferous 
and broadleaf tree species, the spike-free method outperformed the other 
methods in all case studies (Table 5.1 to Table 5.3). Interestingly, 
regardless of which DSM generation method was used, the accuracy rate 
was consistently reduced based on LiDAR pulse density as well as forest 
complexity, as can be seen in Table 5.1 and 5.2. The result showed that all 
DSM generation techniques performed best with dense LiDAR pulse 
density. 
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Table 5.1: Treetop detection results for all DSMs derived from the original high pulse 
density (116 pulse/m2) and  the thinned dataset (5 pulse/m2) in the Bois Noir forest. 
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33 24 9 3 0.75 25 8 12 0.62 16 17 1 0.57 31 2 10 0.78

29 26 3 4 0.86 28 1 8 0.83 24 5 4 0.81 28 1 6 0.86

325 245 80 17 0.78 277 48 34 0.82 190 135 14 0.64 280 45 37 0.82

307 244 63 27 0.73 272 35 34 0.79 218 89 31 0.63 285 22 19 0.88

694 539 155 51 0.77 602 92 88 0.81 448 246 50 0.66 624 70 72 0.85

33 14 19 1 0.51 13 20 0 0.49 15 18 3 0.50 19 14 0 0.67

29 26 3 0 0.93 22 7 1 0.81 21 8 0 0.81 24 5 0 0.88

325 203 122 3 0.69 167 158 3 0.59 174 151 8 0.60 213 112 0 0.73
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Table 5.2: Treetop detection results for all DSMs derived from the original high pulse 
density (16 pulse/m2) and  the thinned dataset (5 pulse/m2) in the Bavarian Forest National 
Park. 

 
*: a few Sycamore maple (Acer pseudoplatanus), Norway maple (Acer platanoides) and 
Mountain ash (Sorbus aucuparia). 
 
Table 5.3: Treetop detection results for all DSMs derived from the original pulse density 
(in average 5 pulse/m2) and  in the Robson creek. 

 
*this table presents only the most dominant species’ families at Robson creek. 
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104 53 51 35 0.18 61 43 35 0.26 56 48 29 0 59 45 10 0.47

192 112 80 63 0.26 108 84 55 0.28 111 81 57 0.28 103 89 11 0.48

337 183 154 75 0.34 210 127 29 0.55 193 144 96 0.31 182 155 25 0.48

266 156 110 74 0.33 174 92 122 0.22 153 113 77 0.30 124 142 21 0.40

84 46 38 23 0.30 51 33 26 0.33 51 33 19 0.41 41 43 7 0.42

264 159 105 81 0.30 176 88 109 0.26 180 84 113 0.26 159 105 24 0.51

1668 943 725 468 0.29 1034 634 578 0.28 983 685 525 0.29 875 793 131 0.45Total
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Lauraceae

Proteaceae

Atherspermataceae
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The pairwise comparisons using the Z statistics for the spike-free method 
and other DSM generated methods is presented in Table 5.4. The test 
indicated that the spike-free algorithm was significantly better than the 
first-return (3.96) and last-return (8.56) methods using the high pulse 
density for detecting treetops at Bois Noir forest (France). However, the 
Z-Statistic comparing the spike-free and highest-return DSMs (2.23) was 
slightly less than the critical Z value (2.57) for an alpha 0.01, thus 
indicating no significant difference between these methods for detecting 
treetops in this forest type. The pairwise test revealed that there was a 
significant difference between using the spike-free and all three other 
methods in the Bavarian National Park (Germany) using high pulse 
density, but not significant when using the thinned dataset (5 pulse/m2). 
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Table 5.4: Results of the Kappa analysis, comparing between the spike-free, the first-
return, the highest-return, and last-return methods using both the original dataset and the 
thinned datasets. 

 
*: at the 99% confidence level interval the value is 2.575 
**: Significant 

 
Tree detection accuracy was also assessed for a range of DBH classes 
using the original datasets. At the Bois Noir forest, the spike-free method 
outperformed the other techniques for DBHs of less than 40 cm (Table 
5.5). The Z test indicated that there was a statistically significant difference 
between using the spike-free and the first- and last-return methods in 
detecting trees with a DBH of less than 20 cm as well as a DBH between 
20-40 cm (Table 5.6). However, for a DBH of more than 40 cm, all DSM 
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Z 
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Z 
Statistic
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_

_

_

2.36

1.81

NS

S

S

NS

NS

NS

Germany

Spike-free vs. 
First-return

3.65 S

Bois Noir forest France

Spike-free vs. 
First-return

3.96 S**

Spike-free vs. 
Highest-return

2.23 NS

1.02

4.45

4.19

0.97

Spike-free vs. 
Last-return

5.41 S

Spike-free vs. 
Last-return

8.56 S

Bavarian National Park

Spike-free vs. 
Last-return

7.37 S

Original dataset Thinned dataset

Robson Creek Australia

Spike-free vs. 
First-return

6.97 S

Spike-free vs. 
Highest-return

7.39 S

Spike-free vs. 
Highest-return

3.99 S
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techniques performed well (Table 5.5 and 5.6). For the Bavarian National 
Park and Robson Creek sites the spike-free method’s kappa values were 
not as high as the results show at the Bois Noir site regarding detecting 
trees, but the spike-free method did consistently outperform the other 
techniques in all DBH ranges (Table 5.5 and 5.6).  

Table 5.5: Tree detection results for three DBH ranges for the first-return, highest-return, 
last-return and spike-free method. 
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258 < 20 188 70 22 0.69 214 44 40 0.72 156 102 17 0.59 224 34 29 0.79

397 20-40 317 80 27 0.80 354 43 40 0.85 262 135 30 0.68 368 29 37 0.88

39 > 40 34 5 2 0.88 34 5 8 0.80 30 9 3 0.80 32 7 6 0.79

477 < 20 220 257 60 0.35 243 234 55 0.41 268 209 99 0.37 244 233 47 0.42

451 20-40 299 152 56 0.57 293 158 77 0.52 320 131 114 0.51 332 119 56 0.64

427 > 40 346 81 102 0.70 307 120 72 0.67 344 83 152 0.63 367 60 78 0.77

1060 < 20 583 477 263 0.31 632 428 345 0.28 595 465 327 0.26 519 541 74 0.42

463 20-40 285 178 162 0.26 316 147 186 0.28 291 172 166 0.27 270 193 43 0.49

145 > 40 75 70 43 0.29 86 59 47 0.34 97 48 32 0.50 86 59 14 0.54

Robson Creek Australia

Bavarian National Park Germany

Bois Noir forest France
 Field-measured trees First-return DSM Highest-return DSM Last-return DSM Spike free DSM
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Table 5.6: Results of the Kappa analysis, comparing between the spike-free method and 
the first-return, highest-return, and last-return methods. 

 

Comparison
Portion of 

DBH range 
(cm)

Z 
Statistic

Result

< 20 2.66 S

20-40 3.51 S

> 40 -1.34 NS

< 20 1.84 NS

20-40 1.48 NS

> 40 -0.10 NS

< 20 4.85 S

20-40 7.42 S

> 40 -0.08 NS

< 20 1.83 NS

20-40 1.95 NS

> 40 2.65 S

< 20 0.44 NS

20-40 3.37 S

> 40 3.59 S

< 20 1.30 NS

20-40 3.75 S

> 40 5.07 S

< 20 4.06 S
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> 40 3.38 S

< 20 5.10 S

20-40 4.95 S

> 40 2.71 S

< 20 5.71 S

20-40 5.19 S

> 40 0.49 NS
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Spike-free vs. 
First-return

Spike-free vs. 
Highest-return

Spike-free vs. 
Last-return

GermanyBavarian National Park

Bois Noir forest

Australia

Spike-free vs. 
First-return

Spike-free vs. 
Highest-return

Spike-free vs. 
Last-return

Spike-free vs. 
First-return

Spike-free vs. 
Highest-return

Spike-free vs. 
Last-return
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5.5 Discussion 
The spike-free algorithm and three other conventional DSM generation 
techniques for detecting individual trees from LiDAR data were compared 
and evaluated across multiple forest types and different LiDAR pulse 
densities. Although our results show that the use of a spike-free DSM can 
improve the accuracy of treetop detection in compare with other 
approaches,  the accuracy strongly depends on the LiDAR pulse density 
and forest complexity. 

5.5.1 Effect of forest complexity 
In order to directly evaluate how increasing forest complexity influences 
the accuracy of tree detection using the spike-free algorithm, we artificially 
thinned both the original high pulse density LiDAR datasets (the Bois Noir 
forest and Bavarian Forest National Park LiDAR datasets) to 5 pulse/m2. 
The best detection result was obtained within the Bois Noir forest (France) 
which consists of coniferous plantation trees with only a small amount of 
understory density (original data = 0.85 kappa, thinned data = 0.68 kappa). The 
lowest detection result using the spike-free DSM was obtained at Robson 
Creek, Australia (original data = 0.45 kappa), an area that consists of mixed 
multi-layered broad-leaved trees scanned with drastically varying low 
pulse densities. These results reveal that it is relatively “easy” to detect 
local maxima of conifers that have a conical crown shape with a distinct 
apex (e.g., mountain pine trees in the Bois Noir forest). In contrast, it is 
relatively difficult to determine broadleaved trees that have a rounded and 
irregular crown shape (e.g., European beech in the Bavarian national park) 
or/and have distinct layers of separating crown, which heavily overlap 
(e.g., Lauraceae species at Robson Creek). Although the spike-free method 
outperformed the other techniques at the Bavarian National Park and 
particularly at Robson Creek, their overall results were low. These 
experiments were consistent with those reported in the literature in that the 
accuracy of treetop detection varies from study to study based on the 
structural complexity of the forest stand. For example, Heurich and Thoma 
(2008) and Popescu and Wynne (2004) noted that the rate of detection is 
much greater for conifers than for deciduous trees. Conifers can usually be 
separated easily from neighboring trees, while deciduous trees are often 
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tightly interlocked, especially in homogeneous forests. Vauhkonen et al. 
(2012a) have reported a treetop detection rate of 48% to 60 % for different 
types of forest: boreal forest in Norway and Sweden, coniferous and 
broadleaved forest in Germany, and tropical pulpwood plantations in 
Brazil.  

The result of our treetop detection experiments using the first-return, 
highest-return and last-return DSMs is in agreement with the results of 
previous studies. They have also reported treetop detection accuracies 
using first-return DSMs in the range of 40–70% for different forest types 
(Kaartinen et al., 2012; Kathuria et al., 2016; Yu et al., 2011). Heurich 
(2008) reported a detection accuracy of 45% in the Bavarian National Park 
and Véga and Durrieu (2011) achieved a 70% overall accuracy for the 
southern French Alps using the highest-return DSM. However, using the 
spike-free DSM we achieved a much better treetop detection rate even if 
the study areas scanned with low pulse density. Our findings demonstrate 
that the commission error is very high using all other types of DSM for 
deciduous trees, particularly in the tropical forest with tree crowns heavily 
overlapping. Eysn et al. (2015) and Kaartinen et al. (2012) found that the 
highest-return DSMs generated a high rate of commission error for multi-
layered mixed forests that consist of complex crown shapes (e.g., 
deciduous trees). This is principally because deciduous tree crowns have a 
wide range of sizes with irregular shapes and their branches and sub-
crowns resemble small trees that cause the false detections (Duncanson et 
al., 2014; Jing et al., 2012a; Kato et al., 2009; Popescu and Wynne, 2004). 
Hyyppä et al. (2012) stated that last-return DSM is prone to create too 
many commission errors when there are gaps within individual tree crown 
and the area is covered by bushes. The remarkable result of this study is 
that the rate of commission error is significantly lower for both coniferous 
and broadleaved trees using the spike-free DSM. This is because the spike-
free algorithm systematically prevents formation of spikes during TIN 
construction by ignoring any return that would result in increasing 
commission error if inserted. 
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5.5.2 Effect of LiDAR pulse density 
Our results show the strong effect of LiDAR pulse density on the accuracy 
of treetop detection using the spike-free DSM, especially at complex 
forests. Previous studies have claimed that the success in accurately 
detecting local maxima relies on sufficiently high density of laser pulse 
footprints (Holmgren and Persson, 2004). Our spike-free tree detection 
results of thinned low LiDAR pulse density datasets showed that the use 
of a higher density of laser pulses increases the chance to sample the 
treetops  and consequently reduces the omission errors, especially for 
dense stands (Lefsky et al., 2002; White et al., 2016).  

The current implementation of the spike-free algorithm is sensitive to 
variations in the actual spacing between laser pulses. This is because the 
spike-free algorithm relies on a “single” freeze distance for the entire data 
set, implicitly assuming a more or less uniform distance between all 
neighboring laser pulses. Wherever we use a freeze distance larger than 
the actual pulse spacing, triangles are ‘frozen’ too soon, details, 
particularly small trees and trees in dense stands with a narrow spacing, 
are lost, and the likelihood of neighboring crowns being joined together 
increases. This leads to an increased omission error. Wherever we use a 
freeze distance smaller than the actual pulse spacing, triangles remain 
“unfrozen” for too long so that “spikes” can reappear in the DSM and 
cause commission errors. The Robson Creek data set was covered by 
several various pulse density flight lines (see the section 2.1.3). The higher 
number of omission errors in the Robson Creek data set can be explained 
by us using the 99th percentile of the edge length of a last-return 
triangulation as fixed value for the freeze distance. These results agree with 
the observation of Khosravipour et al. (2016) that a fixed freeze distance 
is not optimal when the pulse spacing varies  across the data set. The freeze 
distance needs to be adapted locally to the observed pulse spacing to 
improve treetop detection using low pulse density with irregular 
distribution. 
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5.6 Conclusion 
In this study the performance of a DSM generated from the spike-free 
algorithm was validated to improve treetop detection. The findings show 
that the spike-free DSM method improves tree detection across a range of 
spatial and temporal scales for different forest types/biomes, including 
coniferous, broadleaf deciduous and broadleaf evergreen. The results 
indicate the impact of both forest complexity and pulse density on the 
performance of the spike-free algorithm. The best performance of the 
algorithm achieved within a coniferous plantation (Bois Noir forest, 
France) scanned with high point density. 
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6.1 Introduction 
Individual tree detection (ITD) using LiDAR data plays an increasingly 
significant role in efficiently and accurately monitoring and managing 
forest activities, such as ecosystem modelling and biodiversity assessment 
(White et al., 2016; Wu et al., 2016). The initial and important step in 
detecting individual trees using LiDAR data relies on the generation of 
Digital Surface Models (DSMs) or their normalized Digital Surface 
Models (nDSMs) describing the geometry of the uppermost layer of the 
canopy. The ITD approaches identify local maxima using the geometric 
information of DSMs. The main challenge faced in ITD approaches is to 
identify only “true” treetops. How successful this identification is, depends 
strongly on the quality of the DSM derived from the LiDAR data. 

The quality of the LiDAR derived DSMs depends on several factors: the 
quality of the acquired LiDAR data, data pre-processing and post-
processing, as well as forest conditions (Kaartinen et al., 2012). For 
example, the use of a higher density of laser pulse footprints improves the 
chance of the laser hitting the treetops (Hyyppä et al., 2008; Lefsky et al., 
2002), and the use of more sophisticated DSM generating techniques 
boosts the correctness of subsequent treetop identification by reducing 
commission and omission errors (Chen et al., 2006; Kaartinen et al., 2012; 
Vauhkonen et al., 2012a). A number of studies have indicated that the 
various forest conditions (e.g., crown size, age, tree species, site type and 
steep terrain) can significantly influence intermediate LiDAR derivatives 
and thereby the performance of ITD approaches (Falkowski et al., 2008; 
Pitkänen et al., 2004; Popescu and Wynne, 2004; Vauhkonen et al., 2012a; 
Yu et al., 2011). 

The major focus of this thesis has been to develop a new approach in order 
to generate a high-quality LiDAR-derived DSM that is able to improve the 
accuracy of tree detection across multiple forest types and LiDAR point 
densities. Chapter 2 discussed the development of a new pit-free algorithm 
that efficiently removes “pits” in the Canopy Height Models (CHM), but 
for height-normalized LiDAR data only. Chapter 3 quantified the effect of 
slope on the accuracy of treetop detection due to the height-normalization 
step used with a CHM. In Chapter 4 the main objective was the 
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development of a novel spike-free algorithm that can remove “pits” in the 
DSM directly, without needing to normalize the LiDAR elevations. 
Chapter 5 evaluated the applicability of these spike-free DSMs for 
different forest types and LiDAR point densities. 

6.2 Generating pit-free Canopy Height Models from 
airborne LiDAR 

A LiDAR-derived Canopy Height Model (CHM) or a normalized Digital 
Surfaced Model (nDSM) has typically been used for ITD approaches. A 
CHM represents the relative canopy height above the ground. However, it 
is often generated by interpolating the first return LiDAR points. This 
often leads to height irregularities in the CHM as first returns may also be 
generated far below the top of the canopy. This happens either when the 
laser beam is able to penetrate deeply through canopy branches and foliage 
before producing a first return or when the laser beam glances under the 
vegetation when scanning at highly off-nadir scan angles. This disruptive 
influence of the resulting “pits” forms a challenging problem as it can 
considerably reduce the accuracy of single tree detection. 

Chapter 2 proposed a new algorithm that generates a pit-free CHM raster 
by using a set of partial CHM rasters to close those pits. The algorithm 
operated robustly on both a high and a low point density LiDAR dataset. 
The pit-free CHMs derived from both LiDAR datasets were evaluated by 
visual comparison with the first-return CHMs smoothed with a 5×5 
Gaussian filter. Figure 6.1 details pit-free CHMs side by side with 
Gaussian smoothed CHMs, with their associated x-axis histograms. The 
pit-free algorithm successfully removed all pits (small dark squares) within 
tree crowns that were not completely removed by the Gaussian filter. As 
can be seen, the Gaussian filter over-smoothed the CHMs – especially the 
CHM derived from the low-density LiDAR dataset – leading to an 
underestimation of the canopy height. In contrast, the pit-free algorithm 
removed pits from the CHM without altering the original structure of the 
tree crowns. The profiles depicted in Figure 6.1illustrate that the overall 
morphological structure of canopy vegetation is preserved well in the pit-
free CHM, especially for the high-density LiDAR dataset. 



Synthesis 

108 

Chapter 2 also experimentally validated that using the pit-free CHMs 
generated by the pit-free algorithm statistically significantly improved the 
accuracy of tree detection compared to using the Gaussian-smoothed first-
return CHMs. The pit-free algorithm removed pits from the CHM without 
smoothing and altering the value of all other pixels and thus achieved high 
accuracy in tree detection for both high-point density (74%) and low-point 
density (67%) LiDAR data. The Gaussian filter smoothed the entire CHM, 
thereby affecting its structure everywhere and thus achieving significant 
lower accuracy in detecting trees for both high-point density (70%) and 
low-point density (35%) LiDAR data – especially regarding small trees. 
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Figure 6.1: A visual comparison of the x-axis profiles of pit-free CHMs with those of 
smoothed first-return CHMs derived from both high- and low-density LiDAR data. The 
x-axis represents pixel values from the white dashed line in the corresponding CHMs. 
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6.3 Effect of slope on tree detection in a CHM 
Complex forest terrain presents a challenging problem as it distorts the 
structure of the vegetation in a CHM during the height normalization step, 
thus possibly reducing the accuracy of tree detection (Vega et al., 2014). 
On steep slopes, the raw elevation values located on either the downhill or 
uphill part of a tree crown are height-normalized with parts of the DSM 
that may be much lower or higher than the tree stem base, respectively (fig. 
6.2). Therefore, in the CHM, the downhill part of the crown will “rise” 
while the uphill part will “sink”, causing the entire tree crown to be 
systematically distorted (Figure 6.2). 

 
Figure 6.2: The effect of slope on LiDAR point clouds during the normalization step: 
(a) before normalization and (b) after normalization. 
 
Chapter 3 theoretically and experimentally quantified the effect of slope 
on the accuracy of tree detection. In ITD approaches, the “rising” branch 
overhanging lower terrain in the downhill part can turn into a “false” local 
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maximum that differs from the “true” treetop (Fig 6.3). The theoretical 
model captured the systematic horizontal displacement of treetops that 
causes tree height to be systematically displaced as a function of terrain 
slope and crown shape. For example, if we assume a tree (Fig. 6.3) located 
on a 40-degree slope surface, with an idealized spherical crown with a 
radius of 3.5 m, the detected local maximum has a horizontal positional 
displacement error of 2.20 m and thus the tree height will be overestimated 
by 1.06 m (vertical displacement error) on a CHM. 

 
Figure 6.3: Schematic diagram of an idealized spherical crown shape distorted by a slope 
gradient of 40 degrees during the normalization step. 
 
However, an idealized spherical crown in a theoretical model differs from 
crowns in the field. The experimental results demonstrated that the effect 
of CHM distortion on treetop displacement strongly depends on the 
particular tree crown shape, which is largely determined by its species. For 
example, the influence of the systematic error showed only significance 
for Scots pine trees, which have an irregular crown shape with a weak 
apical dominance, but not for mountain pine trees, which have a narrow 
conical crown with a distinct apex.  

On the basis of our results, Chapter 3 recommended using raw elevation 
values (i.e., the un-normalized DSM) for detecting the location of treetops 
and performing the normalization step for computing the height of the trees 
afterwards in order to circumvent the distorting effect the steep slopes have 
on crown structure in a CHM, especially in heterogeneous forests 
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consisting of multiple species. The next step is an appropriate method for 
generating a high-quality LiDAR-derived DSM for ITD approaches. 

6.4 Generating spike-free DSMs from LiDAR data 
As mentioned in the Chapter 2, a DSM (or an nDSM/CHM) raster has 
typically been generated from LiDAR by interpolating all first returns. 
This method cannot faithfully represent the uppermost layer of the canopy 
forest for ITD approaches, as first returns may also be generated far below 
the top canopy (see 6.2). Such first returns may cause large height 
variations – called pits in the raster and spikes in the TIN – within single 
tree crowns, impeding the detection of individual trees. In Chapter 2, we 
presented a pit-free algorithm able to generate a pit-free CHM (or 
normalized DSM). However, the pit-free algorithm is impractical for 
generating a pit-free DSM raster due to the excessive number of partial 
DSMs that would be required, especially in steep and complex forested 
terrain. Moreover, the pit-free CHM algorithm used only first returns, 
potentially missing canopy details captured by second, third, or fourth 
returns. 

Chapter 4 presented a novel “spike-free” algorithm that can generate a 
DSM at the highest resolution supported by LiDAR in the form of a spike-
free TIN. The algorithm considers all LiDAR returns and systematically 
prevents the formation of spikes during TIN construction by selectively 
ignoring returns for which insertion will result in a spike. Although the pit-
free algorithm (as presented in Chapter 2) is already able to remove pits 
efficiently and showed the potential to improve the detection of trees, the 
spike-free DSM generated from all relevant returns can capture more 
details (especially in low vegetation) than the corresponding pit-free CHM 
generated from only the first returns (Figure 6.4).  
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Figure 6.4: Illustrating the spike-free DSM side by side with its corresponding pit-free 
CHM. The x-axis presents pixel values from the white dashed line in the rasters. 
 
By considering the contribution of all relevant returns, the spike-free 
algorithm significantly improved the accuracy of tree detection compared 
to the first-return DSM. Chapter 4 demonstrated a further improvement on 
the result of Chapter 2, which with a pit-free CHM for detecting trees, 
especially small trees (Table 6.1). 
 
Table 6.1: Proportion of correctly detected trees for three DBH ranges for the first-return 
DSM, the pit-free CHM and the spike-free DSM. 

Portion of DBH 
range (cm) 

All (n= 694) 

< 20 (n = 258) 20-40 (n = 397) > 40 (n = 39) 

First-return DSM 150 (58.1%) 299 (75.3 %) 33 (84.6 %) 

Pit-free CHM 184 (71.3 %) 326 (82.1 %) 34 (87.1 %) 

Spike-free DSM 204 (79.0 %) 357 (90 %) 33 (84.6 %) 
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6.5 Evaluation of spike-free DSMs across different 
forest types  

The quality of a LiDAR-derived DSM largely depends on the quality of 
the acquired LiDAR data, as well as on forest conditions (Falkowski et al., 
2008; Pitkänen et al., 2004; Popescu and Wynne, 2004; Vauhkonen et al., 
2012a; Yu et al., 2011). In Chapter 5 the applicability of spike-free DSMs 
was evaluated for the purpose of tree detection at different LiDAR point 
densities (high, moderate and low) and for different forest types (a 
temperate plantation in France, a temperate mixed deciduous-coniferous 
forest in Germany and a tropical rain-forest in Australia). Chapter 5 
statistically compared the accuracy of treetop detection on the spike-free 
DSM to the accuracies achieved on DSMs generated from first-return, 
highest-return and last-return LiDAR points.  

Although Chapter 5 established that the spike-free DSM significantly 
improves the accuracy of tree detection across multiple forest types and 
across different LiDAR point densities, the results did indicate that forest 
structure as well as the LiDAR point density affect how much a spike-free 
DSM can improve the accuracy. For example, the best detection result was 
obtained within the Bois Noir Forest, France (Kappa = 0.85), which 
consists of coniferous plantation trees with only a small amount of 
understory scanned with very high point density, while the lowest 
detection result on a spike-free DSM was obtained at Robson Creek, 
Australia (Kappa = 0.45), which consists of a mix of multi-layered broad-
leaved trees scanned at low point density. As expected, the ITD approach 
easily identified local maxima of conifers that have a conical crown shape 
with a distinct apex (e.g. mountain pine trees at Bois Noir Forest), while it 
was relatively difficult to identify local maxima of broadleaved trees that 
have a rounded and irregular crown shape (e.g. European beech at 
Bavarian National Park) or/and have distinct layers of separating crown, 
which heavily overlap (e.g. Lauraceae species at Robson Creek). 

Chapter 5 showed the effect of low LiDAR point density with large 
variations in the point spacing on the accuracy of treetop detection using 
the spike-free DSM. This is because the spike-free algorithm relies on a 
“single” freeze distance for the entire data set, which implicitly assumes a 
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more or less uniform distance between all neighboring laser pulses. The 
result of the ITD approach showed a high number of omission errors 
(undetected trees) in the Robson Creek data, which are scanned by several 
low-density flight lines with the point density ranging from 1.63 to 10.13 
points/m2 and the pulse spacing ranging from 0.73 to 0.31 m. In area where 
the freeze distance was significantly larger than the actual pulse spacing, 
triangles in that area were frozen too early and details, particularly small 
trees and trees in dense stands with narrow spacing, were lost. These 
results agree with the observation made in Chapter 4 that a “fixed freeze” 
distance is not optimal when the pulse spacing varies across a dataset. 
Ideally, the freeze distance should be constantly adapted to the observed 
pulse spacing to improve the treetop detection for low point density with 
irregular pulse spacing.   

6.6 Broader usage of a spike-free DSM 

The spike-free algorithm improves accuracy of tree detection and, 
subsequently, offers the possibility of improving accuracy of tree crown 
extraction and height estimation, which in turn are useful inputs for growth 
and volume estimation modeling (Popescu et al., 2003). Acquiring 
accurate individual tree parameters from LiDAR-derived spike-free DSM 
will have significant applications in a variety of forest activities, including 
sustainable forest management, biomass estimation, carbon stock 
estimation, and wildland fire risk assessment at regional and global scale. 

Recently, the use of multi-sensoral data based on integrating LiDAR data 
with hyperspectral or multi-spectral images has attracted much attention 
for forest applications, including species identification, age, and 
environmental stress (Erdody and Moskal, 2010; Popescu et al., 2004; 
Swatantran et al., 2011; Verrelst et al., 2009). In theory, a major limitation 
of ITD approaches based on LiDAR is the lack of spectral information and 
a major limitation of ITD approaches based on multispectral imagery is 
the lack of height information. The integration of LiDAR-derived spike-
free DSMs and imagery offers may lead to higher accuracies in extraction  
of forest parameters.  
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Initial experiments in Chapter 4 of applying the spike-free algorithm to 
airborne LiDAR collected over towns and cities showed noticeable 
improvements in the modeling of urban scenes, especially along the sides 
of buildings. The spike-free algorithm produces a much cleaner surfaces 
with better defined edges. The spike-free algorithm will generally produce 
a cleaner surface for objects that laser pulse can peek under, such as eaves 
of roofs, covered walkways, or bridges. This could prove useful for 
automated reconstruction of building outlines from a DSM or similar 
automated extraction tasks. 

6.7 Future research 

The current implementation of the spike-free algorithm is sensitive to 
variations in the actual spacing between laser pulses. This is because of the 
spike-free algorithm relies on a “single” freeze distance for the entire data. 
A fixed value for the freeze distance will not be optimal when the pulse 
spacing varies constantly across the dataset. Wherever a freeze distance 
larger than the actual pulse spacing is used, triangles will be frozen too 
early and details, particularly small trees and trees in dense stands with a 
narrow spacing, will be lost, making it more likely for neighboring crowns 
to be joined together, and increasing the omission error. Wherever a freeze 
distance smaller than the actual pulse spacing is used, triangles remain 
“unfrozen” for too long so “spikes” can reappear in the DSM and cause 
commission errors. In the future, it may be useful to locally adapt the 
freeze to the observed pulse spacing in order to further improve the 
accuracy of the algorithm. 

The general performance of the spike-free algorithm was only validated to 
improve tree detection using one of the ITD approaches (e.g., 
morphological opening and reconstruction methods). Further tests should 
be carried out to evaluate if and how much a spike-free DSM improves the 
accuracy of tree detection for other ITD methods, particularly in tropical 
forests. As the spike-free algorithm can produce more clearly delineated 
surfaces with better defined edges, it would be interesting to evaluate how 
the use of a spike-free DSM affects the derivation of crown area for various 
crown delineation techniques. 
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Summary 
Individual tree detection (ITD) using airborne LiDAR data plays an 
increasingly significant role in the efficient and accurate monitoring and 
managing of forest activities. A first step in detecting individual trees using 
LiDAR data is the generation of a Digital Surface Model (DSM) or a 
normalized Digital Surface Model (nDSM/CHM) that describes the 
geometry of the uppermost layer of the canopy. A DSM or a nDSM/CHM 
is typically calculated by interpolating first-return LiDAR points. Various 
ITD approaches then identify local maxima in the resulting elevation or 
height rasters. ITD approaches trying to identify all “true” treetops  are 
strongly affected by the quality of the LiDAR-derived rasters, which in 
turn are determined by factors such as the quality of the acquired LiDAR 
point clouds, the pre-processing, the post-processing, as well as the forest 
conditions and the complexity of the terrain. 

The aim of this thesis is to develop a new approach for generating a high 
quality LiDAR-derived DSM that improves the accuracy of individual tree 
detection across multiple forest types and LiDAR point densities. The 
research in this thesis firstly presents a new “pit-free” algorithm able to 
create a pit-free CHM raster and efficiently remove those canopy height 
variations (called pits in a raster and spikes in a TIN) that cause difficulty 
in detecting individual trees. The algorithm operates robustly on high- and 
low-density LiDAR data and significantly improves the accuracy of tree 
detection in comparison to the accuracies achieved using a smoothed first-
return CHM. As complex forest terrain presents a challenging problem for 
the performance of the height normalization step by distorting the 
normalized DSM (nDSM/CHM), the thesis subsequently aims to quantify 
the effect of slope on the accuracy of treetop detection in a pit-free LiDAR-
derived CHM. To avoid the height normalization step, the research moves 
on to develop a novel “spike-free” algorithm that can directly generate a 
DSM (without the need to normalize) at the highest possible resolution 
using all relevant LiDAR returns. This algorithm considers all LiDAR 
returns (not just the first returns), while systematically preventing the 
formation of spikes during the TIN construction process. This spike-free 
algorithm significantly improves the accuracy of tree detection across 
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multiple forest sites (a temperate plantation in France, a temperate mixed 
deciduous-coniferous forest in Germany and a tropical rain-forest in 
Australia) and across different LiDAR point densities. The algorithm 
offers the possibility of improving accuracy of crown delineation, height 
estimation, and other biophysical parameters at both a regional and global 
scale. 
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Samenvatting 
Individuele Boom Detectie (ITD) gebaseerd op LiDAR data speelt een 
steeds grotere rol bij het efficiënt en nauwkeurig volgen en manipuleren 
van bos processen. Een eerst stap in het herkennen van individuele bomen, 
gebruikmakend van LiDAR gegevens, is het genereren van een Digital 
Surface Model (DSM) of een genormaliseerd Digital Surface Model 
(nDSM/CHM) dat de geometrie van de allerbovenste laag van de vegetatie 
beschrijft. Een DSM of een nDSM/CHM wordt over het algemeen 
berekend door ‘first-return’ LiDAR punten te interpoleren. Vervolgens 
zijn er verschillende wijzen waarop ITD kan worden aangepakt om lokale 
maxima te identificeren in de resulterende hoogte rasters. Een ITD aanpak 
waarbij getracht wordt alle ‘ware’ boomkruinen te identificeren, wordt 
sterk beïnvloed door de kwaliteit van de met LiDAR geproduceerde 
rasters, welke zelf weer afhankelijk zijn van factoren zoals de kwaliteit van 
de verkregen LiDAR ‘point clouds’, de gegevens verwerking, zowel van 
tevoren als achteraf, als van de complexiteit van het bos en het terrein zelf. 
 
Het doel van dit onderzoek is om op een nieuwe wijze een op LiDAR 
gebaseerde DSM van hoge kwaliteit te genereren, die de exactheid van de 
detectie van individuele bomen verbetert voor zowel verschillende bos 
typen als LiDAR punt dichtheden. Het onderzoek presenteert eerst een 
nieuw ‘pit-free’ algoritme, dat een ‘pit-free’ CHM raster kan creëren en op 
efficiënte wijze variaties in de kruin hoogte kan verwijderen (in een raster 
‘pits’ en in een TIN ‘spikes’ genoemd), die het moeilijk maken om 
individuele bomen te onderscheiden. Dit algoritme werkt robuust bij zowel 
hoge- als lage-dichtheid LiDAR data en verbetert de kwaliteit van boom 
detectie sterk in vergelijking met uitkomsten van een ‘smoothed first-
return’ CHM. Omdat complex terrein een grote uitdaging vormt bij de stap 
waar hoogtes worden genormaliseerd, doordat de genormaliseerde DSM 
(nDSM/CHM) dan wordt verwrongen, poogt dit onderzoek vervolgens om 
het effect van helling op de nauwkeurigheid van boomtop detectie te 
kwantificeren in een ‘pit-free’, op LiDAR gebaseerde CHM. Om de stap 
van hoogte normalisatie te vermijden, wordt getracht een nieuw, ‘spike-
free’ algoritme te ontwikkelen, dat zonder normalisatie een DSM kan 
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genereren met de hoogste resolutie, gebruikmakend van alle relevante 
LiDAR ‘returns’. Dit algoritme maakt gebruik van alle LiDAR ‘returns’ 
(niet alleen van de ‘first returns’), tegelijkertijd voorkomend dat er 
gedurende het TIN constructie proces ‘spikes’ worden gevormd. Dit 
‘spike-free’ algoritme verbetert de detectie van bomen significant in 
verschillende bos typen (een plantage in gematigd klimaat in Frankrijk, 
een gemengd loof-naaldbos in gematigd klimaat in Duitsland en een 
tropisch regenwoud in Australië) alsmede voor verschillende LiDAR punt 
dichtheden. Dit algoritme presenteert een wijze om de kwaliteit te 
verbeteren van kruin herkenning, hoogte schattingen en andere biofysische 
parameters op zowel regionaal als wereld niveau 
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